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Physical Constants

Permittivity of free space ε0 = 8.854 × 10−12 Fm−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 2.998× 108 m s−1

Gravitational constant G = 6.673× 10−11 N m2 kg−2

Elementary charge e = 1.602× 10−19 C

Electron rest mass me = 9.109× 10−31 kg

Unified atomic mass unit mu = 1.661× 10−27 kg

Proton rest mass mp = 1.673× 10−27 kg

Neutron rest mass mn = 1.675× 10−27 kg

Planck constant h = 6.626× 10−34 J s

Boltzmann constant kB = 1.381× 10−23 J K−1

Stefan-Boltzmann constant σ = 5.670× 10−8 Wm−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022× 1023 mol−1

Molar volume of ideal gas at STP = 2.241× 10−2 m3

One standard atmosphere P0 = 1.013× 105 N m−2
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SECTION A – Answer ALL parts of this section

1.1) Find the residue at z = 1 of the function 1/(z − 1) (z − 2).

[4 marks]

1.2) Define the Lagrangian of a system in general and, for the particular case of a
harmonic oscillator in 3-dimensions, state its form using cartesian co-ordinates.

[6 marks]

1.3) From the Laurent series

e
z
2 (t− 1

t ) =
∞∑

n=−∞
Jn (z) tn

deduce that
Jn−1 (z)− Jn+1 (z) = 2

d

dz
Jn (z) .

[7 marks]

1.4) Use the Cauchy theorem to calculate∮
C

e
1
z dz

where C is the contour |z − 3| = 2.

[5 marks]

1.5) Use the calculus of variations to show that the shortest path between two points
in a plane is a straight line.

[7 marks]

1.6) Show that the function x− iy does not satisfy the Cauchy-Riemann relations.

[4 marks]
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1.7) Evaluate the contour integral∮
|z|=3

dz
1

(z − 1)
(

z
2 − 1

) .

[7 marks]
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SECTION B – Answer TWO questions

2) A circular membrane of radius 2 lies in a region of the xy plane with plane polar
coordinates 0 ≤ ρ ≤ 2 and 0 ≤ ϕ ≤ 2π. The boundary of the membrane is fixed.
The membrane may be assumed to vibrate according to the equation

1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+

1
ρ2

∂2ψ

∂ϕ2
=

1
c2
∂2ψ

∂t2

where ψ is the vertical displacement of the membrane and c is a constant. Show
that the normal modes of vibration of the membrane are

ψm,s (ρ, ϕ, t) = Am,sJm (km,sρ) sin (mϕ+Bm,s) cos (ckm,st+Dm,s)

where m = 0, 1, 2, . . . , s = 0, 1, 2, . . . , Am,s, Bm,s and Dm,s are constants,
km,s = jm,s/2 and {jm,s; s = 1, 2, . . .} are the positive zeros of the Bessel func-
tion Jm (z).

Hint: the differential equation

z2f ′′ + zf ′ +
(
z2 −m2

)
f = 0

has a solution f (z) = AJm (z) +BYm (z) where A and B are constants.

[20 marks]

Show that the radial part of the normal mode ψm,s (ρ, ϕ, t) satisfies the orthog-
onality relation ∫ 2

0

Jm

(
jm,r

ρ

2

)
Jm

(
jm,s

ρ

2

)
ρ dρ = 0,

where r, s = 1, 2, . . . and r 6= s.

[10 marks]
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3) State the Cauchy residue theorem for contour integrals.

[3 marks]

Use this theorem to evaluate the following integrals

a) ∫ 2π

0

exp (−2iθ)
(5− 3 sin θ)2

dθ,

[12 marks]

b) ∫ ∞

0

x2

1 + x4
dx.

[15 marks]

Justify the neglect of any contour integral in part (b).
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4a) A classical system with n degrees of freedom has a lagrangian L ({qi} , {q̇i})
with 1 ≤ i ≤ n ; define the corresponding hamiltonian and deduce the Hamilton
equations of motion.

[5 marks]

b) A particle of mass m is constrained to move on the surface of a smooth torus
which has a parametric representation

x = ρ cosψ, y = ρ sinψ, z = sin θ

where
ρ = 2 + cos θ

with 0 ≤ ψ < 2π and 0 ≤ θ < 2π. Apart from the constraint there are no other
external forces acting on the particle. In terms of generalised co-ordinates θ and
ψ show that the lagrangian of the particle is

L =
m

2

[
(2 + cos θ)2 ψ̇2 + θ̇2

]

[12 marks]

c) Determine the hamiltonian of the system.

[7 marks]

d) From the Hamilton equations show that if the particle moves with θ = 0 then
ψ̇ is a constant of motion.

[6 marks]
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