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Physical Constants

Permittivity of free space €0 8.854 x 10712 Fm™!
Permeability of free space Lo A x 1077 Hm™!
Speed of light in free space c 2.998 x 108 ms~!
Gravitational constant G 6.673 x 10711 Nm? kg2
Elementary charge e 1.602 x 1071 C
Electron rest mass Me 9.109 x 10731 kg
Unified atomic mass unit My 1.661 x 10727 kg
Proton rest mass mp 1.673 x 10727 kg
Neutron rest mass My 1.675 x 10727 kg
Planck constant h 6.626 x 1073%  Js
Boltzmann constant kg 1.381 x 1023  JK!
Stefan-Boltzmann constant o 5.670 x 1078 Wm 2K
Gas constant R 8.314 Jmol T K1
Avogadro constant Na 6.022 x 10%3 mol !
Molar volume of ideal gas at STP 2.241 x 1072 m3
One standard atmosphere Py 1.013 x 10° Nm~2
Bessel’s equation:
2 d
oy (@) F o dy (@) + (27 = p%) Jp () = 0

Laplacian in polar co-ordinates:
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Euler’s equation:
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SECTION A — Answer all SIX parts of this section

Consider a potential V' (x,y) satisfying the Laplace equation in the plane . It is

given on the x-axis by
2

V(z,y=0)= Voe o2
where Vy and a are real.

Using the theory of analytic functions show that

22 y2 9
V(z,y) = Voe~ 2 cos (%) :
a

[7 marks]

By transforming the path of integration in the complex k-plane to the horizontal

line Im (k) = —i5-;, show that the integral

o0
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—o0

2 .
e—nk t—zkwdk

can be rewritten as
2 o

e_zf_m / e~ Rt L.
T

— 00

[7 marks]

Given that
u(x,y) = 2?4 62 — 3>

is the real part of an analytic function f (z), derive the corresponding imaginary
part of f(z) by use of the Cauchy-Riemann relations.

[7 marks]

3 SEE NEXT PAGE



CP3201

1.4) On writing the Bessel function J, (z) (see the rubric) as z%g, (z) show that the
differential equation for g, (z) does not involve first derivatives when o = —%

and derive the resulting differential equation for g, ().

When v? = 1/4 what is the general solution for Jl/ (x)?
2

[7 marks]
1.5) Find the Laurent series about z = 1 for
eZ
e(z—1%
[7 marks]
1.6) Evaluate
j{ dz
c(z—3)(22—1)
when C'is the circle |z| = 1.
[7 marks]
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SECTION B — Answer TWO questions

The surface of a circular drum of radius R is a two-dimensional membrane. Let
u (7, ¢) be the displacement out of the plane of the membrane due to a wave at
a point on its surface. The point (r,¢) is expressed in polar co-ordinates with
respect to the centre of the drum with 0 < r < Rand 0 < ¢ < 27w u(r,¢)
satisfies the Helmholtz equation

Vu+ku=0

where k is the wavenumber of the wave. At the edge of the drum r = R, the
membrane is stationary and so u (R, ¢) = 0.

On writing u (1, ) = F (r) G (¢) show that the Helmholtz equation reduces to

d’F 1dF

1
ab lab e _> F=0
dr? + r dr + ( r2
and 2G
G =0
dp? s
where p is a constant. [12 marks]
Justify the following boundary conditions:
F(R)=0
G(p) =G (p+2m)
F(r) < oc.
Hence show that p = m? where m is an integer. [8 marks]

Prove that the general solution for F'(r) has the form
F(r)= AJp, (kr)+ BN,, (kr)

in terms of constants of integration A and B. [6 marks]

From the boundary conditions deduce any constraints on the values of A, B and
k.

[4 marks]
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3a) Consider a meromorphic function h(z) which can be expanded around a point
z = zp as a Laurent series, i.e.

h(z) = Z an (2 — 20)"
Show that )
j{h(z) dz = Z ia,e" /ei(’”l)“’dga
C: n=Tee 0
where C. is a circle centred at z = zg of small radius . [5 marks]

b) Prove by direct integration that

27

/dgoeim‘p—{o for m=#0

2w for m =0.
0 [4 marks]

c¢) Use this result to derive

J(I{h (z)dz = 2mia_q.

C.
[3 marks]
d) For an arbitrary closed contour C' discuss the conditions for
j{h (z)dz = 2mia_q.
c
[4 marks]
e) Prove that the function
1
h(z) = ——=
has poles at z = +¢ and that the residue at the pole z =i is % [7 marks]
f) Use the Cauchy residue theorem to show that
1
/ a2 de =m
- [7 marks]
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4a) Outline the use of analytic functions and the Cauchy-Riemann relations to solve
the two-dimensional Laplace’s equation. 10 marks|

b) An arbitrary point on the surface of a soap film is given by the position vector

X
T =Xy
h(z,y)

The projection of the soap film on the x — y plane is a square R :
R={-1<z<1, -1<y<1}.
The boundary conditions satisfied by h (z,y) are

h(z,1)=h(zx,—1)=2% -1
h(lay> :h(_lay) :1_y2-

An infinitesimal surface area dS of the soap film is

— —
s = ‘8—r « T iy,

ox dy

In terms of h (x,y) show that

dS = \/1+ |Vh|*dzdy

where Vh is the two-dimensional vector Vh = (%, g—Z). [6 marks]

¢) The shape of the soap film is determined by minimising its area S

1 1
S = /d:z:/dy\/l—%\Vh\Q.
-1 -1

From the FEuler-Lagrange equations show that h(x,y) satisfies the two-
dimensional Laplace’s equation

VZh =0
when |Vh| < 1. [10 marks]

Hence by choosing a suitable analytic function demonstrate that the shape of
the soap film is given by
h(x,y) = -y
[4 marks]
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