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Physical Constants

Permittivity of free space ε0 = 8.854 × 10−12 Fm−1

Permeability of free space µ0 = 4π × 10−7 H m−1

Speed of light in free space c = 2.998× 108 m s−1

Gravitational constant G = 6.673× 10−11 N m2 kg−2

Elementary charge e = 1.602× 10−19 C

Electron rest mass me = 9.109× 10−31 kg

Unified atomic mass unit mu = 1.661× 10−27 kg

Proton rest mass mp = 1.673× 10−27 kg

Neutron rest mass mn = 1.675× 10−27 kg

Planck constant h = 6.626× 10−34 J s

Boltzmann constant k B = 1.381× 10−23 J K−1

Stefan-Boltzmann constant σ = 5.670× 10−8 Wm−2 K−4

Gas constant R = 8.314 J mol−1 K−1

Avogadro constant NA = 6.022× 1023 mol−1

Molar volume of ideal gas at STP = 2.241× 10−2 m3

One standard atmosphere P0 = 1.013× 105 N m−2

Bessel’s equation:

x2 d2

dx2
Jp (x) + x

d

dx
Jp (x) +

(
x2 − p2

)
Jp (x) = 0

Laplacian in polar co-ordinates:

∇2u (r, θ) =
1
r

∂

∂r

(
r

∂

∂r
u (r, θ)

)
+

1
r2

∂2

∂θ2
u (r, θ)

Euler’s equation:

δ

x2∫
x1

dx

y2∫
y1

dy F

(
x, y, h (x, y) ,

∂h (x, y)
∂x

,
∂h (x, y)

∂y

)
= 0

⇒ ∂

∂x

∂F

∂
(

∂h
∂x

) +
∂

∂y

∂F

∂
(

∂h
∂y

) − ∂F

∂h
= 0
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SECTION A – Answer all SIX parts of this section

1.1) Consider a potential V (x, y) satisfying the Laplace equation in the plane . It is
given on the x-axis by

V (x, y = 0) = V0e
− x2

a2

where V0 and a are real.

Using the theory of analytic functions show that

V (x, y) = V0e
− x2−y2

a2 cos
(

2xy

a2

)
.

[7 marks]

1.2) By transforming the path of integration in the complex k-plane to the horizontal
line Im (k) = −i x

2κt , show that the integral

1
2π

∞∫
−∞

e−κk2t−ikxdk

can be rewritten as
e−

x2
4κt

2π

∞∫
−∞

e−κk2tdk.

[7 marks]

1.3) Given that
u (x, y) = x2 + 6x− y2

is the real part of an analytic function f (z), derive the corresponding imaginary
part of f (z) by use of the Cauchy-Riemann relations.

[7 marks]
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1.4) On writing the Bessel function Jν (x) (see the rubric) as xαgν (x) show that the
differential equation for gν (x) does not involve first derivatives when α = − 1

2

and derive the resulting differential equation for gν (x).

When ν2 = 1/4 what is the general solution for J1/2
(x)?

[7 marks]

1.5) Find the Laurent series about z = 1 for

ez

e (z − 1)2
.

[7 marks]

1.6) Evaluate ∮
C

dz

(z − 3) (2z − 1)

when C is the circle |z| = 1.

[7 marks]
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SECTION B – Answer TWO questions

2) The surface of a circular drum of radius R is a two-dimensional membrane. Let
u (r, ϕ) be the displacement out of the plane of the membrane due to a wave at
a point on its surface. The point (r, ϕ) is expressed in polar co-ordinates with
respect to the centre of the drum with 0 ≤ r ≤ R and 0 ≤ ϕ < 2π. u (r, ϕ)
satisfies the Helmholtz equation

∇2u + k2u = 0

where k is the wavenumber of the wave. At the edge of the drum r = R, the
membrane is stationary and so u (R,ϕ) = 0.

a) On writing u (r, ϕ) = F (r) G (ϕ) show that the Helmholtz equation reduces to

d2F

dr2
+

1
r

dF

dr
+

(
k2 − µ

r2

)
F = 0

and
d2G

dϕ2
+ µG = 0

where µ is a constant. [12 marks]

b) Justify the following boundary conditions: F (R) = 0
G (ϕ) = G (ϕ + 2π)
F (r) <∞.

Hence show that µ = m2 where m is an integer. [8 marks]

c) Prove that the general solution for F (r) has the form

F (r) = AJm (kr) + BNm (kr)

in terms of constants of integration A and B. [6 marks]

From the boundary conditions deduce any constraints on the values of A,B and
k.

[4 marks]
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3a) Consider a meromorphic function h(z) which can be expanded around a point
z = z0 as a Laurent series, i.e.

h(z) =
∞∑

n=−∞
an (z − z0)

n
.

Show that ∮
Cε

h (z) dz =
∞∑

n=−∞
ianεn+1

2π∫
0

ei(n+1)ϕdϕ

where Cε is a circle centred at z = z0 of small radius ε. [5 marks]

b) Prove by direct integration that

2π∫
0

dϕ eimϕ =
{

0 for m 6= 0
2π for m = 0.

[4 marks]

c) Use this result to derive ∮
Cε

h (z) dz = 2πia−1.

. [3 marks]

d) For an arbitrary closed contour C discuss the conditions for∮
C

h (z) dz = 2πia−1.

[4 marks]

e) Prove that the function

h (z) =
1

1 + z2

has poles at z = ±i and that the residue at the pole z = i is 1
2i . [7 marks]

f) Use the Cauchy residue theorem to show that

∞∫
−∞

1
1 + x2

dx = π.

[7 marks]
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4a) Outline the use of analytic functions and the Cauchy-Riemann relations to solve
the two-dimensional Laplace’s equation. [10 marks]

b) An arbitrary point on the surface of a soap film is given by the position vector

−→r =

 x
y
h (x, y)

 .

The projection of the soap film on the x− y plane is a square R :

R = {−1 ≤ x ≤ 1, −1 ≤ y ≤ 1} .

The boundary conditions satisfied by h (x, y) are

h (x, 1) = h (x,−1) = x2 − 1

h (1, y) = h (−1, y) = 1− y2.

An infinitesimal surface area dS of the soap film is

dS =
∣∣∣∣∂−→r∂x

× ∂−→r
∂y

∣∣∣∣ dxdy.

In terms of h (x, y) show that

dS =
√

1 + |∇h|2dxdy

where ∇h is the two-dimensional vector ∇h =
(

∂h
∂x , ∂h

∂y

)
. [6 marks]

c) The shape of the soap film is determined by minimising its area S

S =

1∫
−1

dx

1∫
−1

dy

√
1 + |∇h|2.

From the Euler-Lagrange equations show that h (x, y) satisfies the two-
dimensional Laplace’s equation

∇2h = 0

when |∇h| � 1. [10 marks]

Hence by choosing a suitable analytic function demonstrate that the shape of
the soap film is given by

h (x, y) = x2 − y2.
[4 marks]

7 FINAL PAGE


