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The following information defines terms used in this examination
and may be of use.

e In a general curvilinear coordinate system (qi1,¢g2,¢3) the unit base vectors e;

(1 =1,2,3) are given by
oo L (0
‘T hi \0g; )’

are the corresponding scale factors.

where h; = ‘g—;
2

e The cylindrical coordinates (1,0, z) are defined by the transformation equations

r=rcosf, y=rsinf, z=z.

e The spherical coordinates (r, 0, ¢) are defined by the transformation equations:
r=rsinfcos¢p, y=rsinfsing, z=rcosb

and the corresponding scale factors are h, =1, hg = r and hy = rsin6.

e The Laplacian of a function ¥(q,q2,¢3) in general orthogonal curvilinear
coordinates (g1, ¢2,¢q3) is given by:

Pun L [0 (laho00) 0 (hhs0¥) 0 (1uhs0)]
~ hihohs |0q1 \ b1 Oqu 0g2 \ ha 0qo O0gz \ hs Ogs

where hi, ho and hs are the corresponding scale factors.

™

e Functions ¢, (z) = sin k,z with k, = ™" and n = 1,2, 3, ... are orthogonal:

a

/O b () ()2 = B

If a function f(z) is expanded in these functions, i.e. f(z) =), fn¢n(x), then
the coefficients are:

fo=2 [ 0)on(ais
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SECTION A — Answer SIX parts of this section

1.1) Show that the unit base vectors e,, ey, e, for the cylindrical coordinates (r,0, z)
can be expressed via the Cartesian vectors i, j and k as follows:

e, =cosfi+sinfj, eg = —sinfi+ cosbj, e, =k

[7 marks]|

1.2) Let ¥(q1,q2,q3) be a scalar field defined in a general orthogonal curvilinear
coordinate system (g1, g2, q3). Show that the gradient is expressed via unit base
vectors e; and scale factors h; (i = 1,2, 3) as

gradV¥ = Z hiig—j:ez
i=1
[7 marks]
1.3) Evaluate the integral
/_Oo e 252z +1)+5H(z+ 1)]dz
where H(x) is the Heaviside unit step function.
[7 marks]

1.4) The integral Fourier transform, F'(v) = F [f(t)], of a function f(t) can be written
as the integral:

F(v) = /_ h f(t)e?m™tdt

Write down the inverse Fourier transform f(t) = F~![F(v)]. What conditions
should the function f(t) satisfy for the Fourier transform to exist? Hence,
explain why the Fourier transform does not formally exist for the Heaviside unit

step function.
[7 marks]
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1.5) Calculate the Fourier transform of the function f(t) which is zero everywhere
except for the interval —1 < x < 1 where it is equal to 1. Hence, using the
inverse Fourier transform, express this function as an integral from —oo and oo.

[7 marks]
1.6) Specify and classify the singular points of the differential equation
d?y dy
2+ )(@? -1 —= +3(x—1)—+2(x+1)y=0
(@ + 1)@ -1 TS 43— )T+ 20+ 1)%
[7 marks]

1.7) Separate the variables in the heat transport equation

10y 0%y
kOt  Ox2
Hence obtain two ordinary differential equations for the two functions in the

corresponding elementary solution, one involving x and another t.

[7 marks]

1.8) Calculate the first three Legendre polynomials P,(z) (n = 0,1,2) using the

Rodrigues formula
]_ dn 2 n
Pal®) = g (& )

Check that Py(x) is orthogonal to both Py(x) and P;(x).

[7 marks]
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SECTION B — Answer TWO questions

Consider the cylindrical coordinates (r,0,z). The unit base vectors e,, eg, €,
for this system can be expressed via the Cartesian vectors i, j and k as follows:

e, =cosfi+sinfj, eg = —sinfi+ cosbj, e, =k

Obtain Cartesian vectors i, j and k via the unit base vectors e,, €y, €,.
[6 marks]

The equations of motion of a point particle are given by r = r(t), § = 6(t) and
z = z(t) (t is time). Show that the time derivatives of the unit base vectors are
given by:

de, . deg . de,

dt = 9eg, ﬁ = —9er, —= =0.

[7 marks]

By considering two close points A and B whose coordinates in a general curvi-
linear coordinate system are (g1, ¢2,qs) and (¢1 + dq1, g2 + dgs, g3 + dgsz), show
that the vector dr connecting the two points in first order with respect to dg;
(1=1,2,3) is

3
dr = Z hidqiei,
=1

where h; is the scale factor.
[4 marks]

Using the results of the previous two questions, show that the velocity, v, and
acceleration, a, of the particle are given by:

v = re, + rfeg + ze,

a= (r — r92) e+ (27’“6" + 7'65) €g + ze,

[8 marks]

Assuming that the particle is of unit mass and moves within the z = 0 plane
in a central force field F(r) = f(r)e,, find differential equations for both ()
and 0(t). (Hint: write down equations of motion along directions e, and eg.)
Hence, show that 6(t) will change linearly with time if the particle moves along
a circular trajectory within the plane.

[6 marks]
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3) The integral Fourier transform F(v) = F[f(t)] of a function f(t) is defined as
F(v) = / f(t)e?m™tdt

a) Find the Fourier transform, F [6(t)], of the Dirac delta function §(¢). Hence,
prove the following integral representation for this function:

i(t) = / e~ 127ty

— 00

[5 marks]
b) The convolution f(t)*g(t) of two functions f(¢) and g(¢) is defined as an integral

w0 = [ 5e-ngrrar

Prove the convolution theorem that the Fourier transform P(v) = F[p(t)] of
p(t) is equal to a product of Fourier transforms of the constituent functions, i.e.
P(v) = F(v)G(v).

[6 marks]

¢) The function f(t) is defined as e~ for ¢ > 0 (o > 0) and zero otherwise. Show
that the convolution of this function with itself d(t) = f(t) * f(t) = tf(t).
[6 marks]

d) Show that the Fourier transform of the function f(¢) defined above is F(v) =
(o —i27wv)~1, while the Fourier transform of the function d(t) = tf(t) is D(v) =
(o —i27wv) 2.

[8 marks]
e) Inversely, show, using the convolution theorem and the definitions of functions
f(t) and d(t) given above, that the function whose Fourier transform is D(v) =
(a —i2mv) =2 is indeed d(t).
[5 marks]
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4) Consider the following differential equation

d2
363:2d—1g +(5-92%)y =0

a) Find and classify all singular points of this equation.
[2 marks]

b) Using the generalised series expansion for the solution (the Frobenius method),
oo
y(z) = x° Z anx”,
n=0

show that the two solutions of the corresponding indicial equation for s can be
chosen as s1 = % and s9 = %, while the recurrence relation for the coefficients

ay, is:

9
36(n+s)(n+s—1)+5

anp = Ap—2, N =2,3,...
[12 marks]

¢) Then, considering the coefficient ag as arbitary, derive three first terms of two
independent series solutions of the equation, y;(z) and y2(z).
[14 marks]

d) Hence, state the general solution of the equation.
[2 marks]

7 SEE NEXT PAGE



5)

a)

CP /2260

Consider a metal sphere of radius a, initially at zero temperature, placed at
t = 0 in a big water reservoir held at a constant temperature of 10 degrees.

Explain why the heat transport equation
1 0u
u2 ot

in this case can actually be written in a simplified form as

1 0u  0%u N 2 0u
p2 ot  orz  ror

where the temperature u = u(r, t) spatially depends only on the distance r from

the sphere centre.

u

[6 marks]

Using a physical argument, write down the stationary (at ¢ — oo) distribution
Uoo () = u(r,00) of temperature in the sphere. Hence, write down a partial
differential equation and the corresponding boundary and initial conditions for
a new function v(r,t) = u(r,t) — Ueo (T)-

[4 marks]

Assuming a negative separation constant —k2, show that the method of sepa-
ration of variables for the function v(r,t) results in the following two ordinary
differential equations (ODEs)

dT ) d’R 2dR ,
—_ = — T _— _— =
7 (puk)*T and 02 + 4 +k*R=0

for the two functions T'(t) and R(r) to be introduced which depend on ¢ and r,
respectively.
[6 marks]

Check that the functions

sin kr

T(t) = e~ Rt and R(r) =
r

satisfy the ODEs above. Explain why the separation constant was chosen neg-

ative.
[4 marks]

Apply the boundary conditions on the sphere surface and deduce that the con-
stant k can only take the following discrete values: k, = 7*, n = 1,2,3, ....
[4 marks]

Hence, show that a general solution of the heat transport equation for the sphere
is

1 oo
v(r,t) = . Z ope~Wrn) tsin ke
n=1

[2 marks]

Finally, apply the initial conditions to find the unknown coefficients v,, and
hence give the complete solution for u(r,t).
[6 marks]
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