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SECTION A — Answer SIX parts of this section

The circular cylindrical coordinates (p, ¢, z) are defined by the transformation
equations

r=pcos¢, y=psing, z=z,

where 0 < p < 00,0 < ¢ < 27 and —00 < 2z < oco. Determine the unit base
vectors for this system.

[7 marks]
Show that, for a general curvilinear orthogonal coordinate system (q1, g2, g3),
the gradient of a scalar field ¥ (qy, g2, g3) is given by
3 e; O
grady = ; h—iaqi ,

where {e;;i = 1,2,3} and {h;;i = 1,2,3} denote the sets of unit base vectors
and scale factors respectively for the coordinate system.

[7 marks]

State the general filtering theorem for the Dirac delta function é(x). Hence

evaluate the integral
° 3t+2
/ ) <T+> exp(—t?) dt.

[7 marks]

Define the Fourier transform F[f(t)] of a function f(¢) which is defined on the
interval —oo < t < oo. Calculate the Fourier transform of the Dirac delta
function 6(¢) . Hence determine a formal integral representation for d(t) .

[7 marks]

Define the convolution f x g of two functions f(¢) and g(t). Prove that f % g =
gxf.
[7 marks]

Explain what is meant by a regular singular point of a linear differential equation
of second order. Classify all the singular points of the differential equation

d2
z(z +1)2 d—xyz—{— (x +3)

dy

—Dy=0.
dm+($ )y

[7 marks]
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Determine the general solution R(r) of the differential equation

d’R dR
2 _
by using the trial solution R(r) = r°, where n =0,1,2,... and s is a constant.

[7 marks]

The general azially symmetric solution of the Laplace equation V2 = 0 in
spherical polar coordinates (r, 8, ¢) is given by

oo

P(r,0,¢) = Z (Apr™ + Bpr™" 1) Py(cos0),

n=0

where A,, and B, are arbitrary contants and P,(u) denotes a Legendre poly-
nomial. Use this result to determine the particular solution ¢ (r, 8, ¢) of the
Laplace equation which is finite in the region 0 < r < a, and satisfies the
boundary condition

Y(a,0,¢) =cosb,
on the surface of the sphere r = a.

[7 marks]

[It may be assumed that Po(p) =1 and Py(u) = p.]
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SECTION B — Answer TWO questions

2) Define the unit base vectors {e;;i = 1,2,3} and the scale factors {h;;i=1,2,3}
for a general three-dimensional curvilinear coordinate system.

[6 marks]

A particular curvilinear orthogonal coordinate system (q1, q2,¢q3) is defined by
the transformation equations

x =cosh gy cosqs,
y =sinh ¢y sinqs ,
2 =(s,
where 0 < g1 < 00, 0 < g9 < 27 and —00 < g3 < o0. Determine the unit base

vectors {e;;4 = 1,2,3} and the scale factors {h;;¢ = 1,2,3} for this coordinate
system, and prove that

hl = hg = (sinh2 a1 + SiIl2 QQ>1/2.

[16 marks]

Hence show that the Laplace equation V21 = 0 can be expressed in the form

2 2 2
1 (8@/) 8?,/1>+(9¢

+ =0.
(sinh? g1 + sin? ¢2)

86132 B

86112 86122

[8 marks]

It may be assumed that the divergence of a vector field F in general curvilinear
orthogonal coordinates is given by

1 0 0 0
divF = —(Fi1hohs) + — (Fshshy) + — (F3hih \
v hihahs {3611( 1712 3) 8qz( 2113 1) 8q3< 311 2)

and the gradient of a scalar field (g1, g2, q3) is given by
3

e; 8¢
grady = Z — .

4 SEE NEXT PAGE



3)

CP /2260

Show that the Fourier transform F[f(¢)] = F'(v) of an odd function f(¢) can be
written in the form

Flf@)]=-2i /000 f(t) sin(2mvt) de.

[7 marks]
Prove that the Fourier transform F(v) of the function
fi@y=t for —1<t<1
=0 otherwise
is given by
F(v) = 598 [sin(27v) — (27v) cos(2mv)] .
[12 marks]
Use the inverse Fourier transform to evaluate the integral
o -
/ sm2a: (sinz — zcoszx) dx.
0
[11 marks]

Use the method of Frobenius to derive two independent series solutions of the
differential equation

d*y dy
3 —5 +2— =0
Y dr? - dr. Ty
in powers of x .
[24 marks|
Show that the series solutions converge for all |z| < co.
[6 marks]
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5) Use the generating function for Legendre polynomials
(=2t + )72 =37 Pa(uy”
n=0

where —1 < <1 and |t| < 1, to prove the following results
(a) (1) =1,
[6 marks]
(b) (2n + pPn(p) = (n+ 1) Poy1(p) +nPoo1(p) .
[12 marks]

Use the recurrence relation (b) to write pP, 1 (p) in terms of P,y o(p) and P, (1),
and also to write uP,_1(p) in terms of P,(u) and P,_o(p). Hence evaluate the
integral

[12 marks]
[It may be assumed that

2

1
Po(w) P (p) dpp = ———
/_ 1 () Prr () dpp = o 1

n,n' s

where 9y, ,,v is the Kronecker delta function.]
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