King's College London

UNIVERSITY OF LONDON

This paper is part of an examination of the College counting towards the award of a degree. Examinations are governed by the College Regulations under the authority of the Academic Board.

B.Sc. EXAMINATION

CP/2260 Mathematical Methods in Physics II

Summer 2003

Time allowed: THREE Hours

Candidates must answer SIX parts of SECTION A, and TWO questions from SECTION B.

The approximate mark for each part of a question is indicated in square brackets.

You must not use your own calculator for this paper. Where necessary, a College calculator will have been supplied.

TURN OVER WHEN INSTRUCTED 2003 ©King's College London

SECTION A – Answer SIX parts of this section

1.1) Show that, for a general curvilinear orthogonal coordinate system (q_1, q_2, q_3) , the gradient of a scalar field $\psi(q_1, q_2, q_3)$ is given by

grad
$$\psi = \sum_{i=1}^{3} \frac{\mathbf{e}_i}{h_i} \frac{\partial \psi}{\partial q_i}$$
,

where $\{\mathbf{e}_i; i = 1, 2, 3\}$ and $\{h_i; i = 1, 2, 3\}$ denote the sets of unit base vectors and scale factors respectively for the coordinate system.

[7 marks]

1.2) Consider the spherical polar coordinates (r, θ, ϕ) ,

$$x = r \sin \theta \cos \phi, \ y = r \sin \theta \sin \phi, \ z = r \cos \theta,$$

where $r \ge 0, \ 0 \le \theta \le \pi$ and $0 \le \phi < 2\pi$. Determine the scale factors h_r, h_θ, h_ϕ for this system and the unit base vectors $\mathbf{e}_r, \mathbf{e}_\theta, \mathbf{e}_\phi$.

[7 marks]

1.3) State the general *filtering theorem* for the Dirac delta function $\delta(x)$. Hence evaluate the integral

$$\int_{-\infty}^{\infty} \,\delta(4t+\pi)\sin(2t)\,dt\,.$$

[7 marks]

1.4) Define the Fourier transform $\mathcal{F}[f(t)]$ of a function f(t) which is defined on the interval $-\infty < t < \infty$. Calculate the Fourier transform of the function

$$f(t) = H(t) \exp(-4\pi t) ,$$

where

$$H(t) = 0, \quad t < 0$$

=1, $t \ge 0$

is the Heaviside step function.

[7 marks]

SEE NEXT PAGE

1.5) The function $\phi(r, \theta, t)$ satisfies the partial differential equation

$$\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial\phi}{\partial r} + \frac{1}{r^2}\frac{\partial^2\phi}{\partial\theta^2} = D\frac{\partial\phi}{\partial t}\,,$$

where D is a constant. Separate the equation into three ordinary differential equations.

[7 marks]

1.6) Explain what is meant by a *regular singular point* of a linear differential equation of second order. Classify all the singular points of the differential equation

$$x^{3}(x-1)\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} + x(x+2)\frac{\mathrm{d}y}{\mathrm{d}x} + (x-2)y = 0.$$

[7 marks]

1.7) Verify that the function

$$y(x,t) = y_1(x+ct) + y_2(x-ct)$$

with arbitrary functions $y_1(x)$ and $y_2(x)$ is a solution of the wave equation

$$\frac{\partial^2 y}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 y}{\partial t^2}$$

[7 marks]

1.8) Use the generating function for Legendre polynomials

$$(1 - 2\mu t + t^2)^{-1/2} = \sum_{n=0}^{\infty} P_n(\mu) t^n$$
,

where $-1 \le \mu \le 1$ and $|t| \le 1$, to prove that

$$P_n(-\mu) = (-1)^n P_n(\mu)$$

for all n = 0, 1, 2, ...

[7 marks]

SECTION B – Answer TWO questions

2) Show that the Fourier transform $\mathcal{F}[f(t)] = F(\nu)$ of an **even** function f(t) can be written in the form

$$\mathcal{F}[f(t)] = 2 \int_0^\infty f(t) \cos(2\pi\nu t) \,\mathrm{d}t \,.$$

[7 marks]

Prove that the Fourier transform $F(\nu)$ of the function

$$\begin{aligned} f(t) &= 1 - |t| & \text{for} \quad 0 \le |t| < 1 \\ &= 0, & \text{otherwise} \end{aligned}$$

is given by

$$F(\nu) = \left[\frac{\sin(\pi\nu)}{\pi\nu}\right]^2 \,.$$

[14 marks]

Use the inverse Fourier transform to evaluate the integral

$$\int_0^\infty \cos x \left(\frac{\sin x}{x}\right)^2 \, \mathrm{d}x \, .$$

[9 marks]

3) Show that, for a general curvilinear orthogonal coordinate system (q_1, q_2, q_3) , the gradient of a scalar field $\psi(q_1, q_2, q_3)$ can be written as

grad
$$\psi = \frac{\mathbf{e}_1}{h_1} \frac{\partial \psi}{\partial q_1} + \frac{\mathbf{e}_2}{h_2} \frac{\partial \psi}{\partial q_2} + \frac{\mathbf{e}_3}{h_3} \frac{\partial \psi}{\partial q_3}$$

where $\{h_i; i = 1, 2, 3\}$ and $\{\mathbf{e}_i; i = 1, 2, 3\}$ denote the sets of scale factors and unit base vectors respectively for the coordinate system.

[10 marks]

A particular curvilinear orthogonal coordinate system (q_1, q_2, q_3) is defined by the transformation equations

$$egin{aligned} &x = q_1 q_2 \cos q_3 \,, \ &y = q_1 q_2 \sin q_3 \,, \ &z = rac{1}{2} (q_1^2 - q_2^2) \,, \end{aligned}$$

where $q_1 \ge 0$, $q_2 \ge 0$ and $0 \le q_3 < 2\pi$. Determine the scale factors $\{h_i; i = 1, 2, 3\}$ and unit base vectors $\{\mathbf{e}_i; i = 1, 2, 3\}$ for this system.

[12 marks]

Hence calculate the gradient of the scalar field

$$\psi(q_1, q_2, q_3) = (q_1^2 + q_2^2) \cos q_3$$

at the point P which has curvilinear coordinates $q_1 = 1$, $q_2 = 1$ and $q_3 = \frac{\pi}{4}$. Express your answer in terms of the Cartesian unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} .

[8 marks]

4) Consider the Bessel differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + (x^{2} - p^{2})y = 0$$

a) Classify the singular points of this equation.

[4 marks]

b) Assuming that the parameter p in the Bessel equation is either noninteger or a negative number, use the Frobenius method to derive three first terms of **two** independent series solutions of the equation, $y_1(x)$ and $y_2(x)$.

[24 marks]

c) Hence, state the general solution of the equation.

[2 marks]

SEE NEXT PAGE

5) Apply the method of separation of variables to the Laplace equation

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial \psi}{\partial r} \right) + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \psi}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2 \psi}{\partial \phi^2} = 0,$$

where $\psi = \psi(r, \theta, \phi)$ and (r, θ, ϕ) are spherical polar coordinates. Hence show that the physically acceptable **product** solutions of the Laplace equation, which are axially symmetric about the z axis and finite at the origin r = 0, are given by

$$\psi(r,\theta,\phi) = r^n P_n(\cos\theta) \,,$$

where n = 0, 1, 2, ..., and $P_n(\mu)$ denotes a Legendre polynomial in the variable $\mu = \cos \theta$.

It may be assumed that the differential equation

$$\sin\theta \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \left(U \sin^2\theta \right) \Theta = 0 \,,$$

only has a physically acceptable solution when the separation constant U = n(n+1) with $n = 0, 1, 2, \ldots$, and that this solution is given by the Legendre polynomial $P_n(\mu)$ with $\mu = \cos \theta$.]

[20 marks]

Determine the particular solution $\psi = \psi(r, \theta, \phi)$ of the Laplace equation which is single-valued and finite in the region $0 \le r \le a$, and satisfies the boundary condition

$$\psi(a, heta,\phi) = \cos^2 heta$$
 .

on the surface of the sphere r = a.

[Note that the first three Legendre polynomials are $P_0(\mu) = 1$, $P_1(\mu) = \mu$ and $P_2(\mu) = \frac{1}{2}(3\mu^2 - 1)$.]

[10 marks]