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SECTION A — Answer SIX parts of this section

1.1) Evaluate the integral
/ te ¥ §(t + 3)dt

and show that -~
/ (26 + 3)6(4t + 1)dt = 5/8,

where §(t) denotes the Dirac delta function.
[7 marks]

1.2) An orthogonal curvilinear coordinate system (q1, g2) is defined by the transfor-

mation equations
1
r=5(01-a) y=ag.
Determine the unit vectors e; and ey for this coordinate system and show that

e; and es are orthogonal.

[7 marks]
1.3) Show that the Fourier transform of the function
flz) = H(z = 1)e™*,
where H(x) denotes the Heaviside step function, is
()\) B e—(1+2miA)
IV T omin
[7 marks]

1.4) By assuming a solution of the form ¢ = Ar¢, determine the general solution of
the differential equation

where n is a positive integer.
[7 marks]

1.5) Determine the general solution of the differential equation

¢
@ +w QS =0
which satisfies the boundary conditions that ¢(0) = ¢(L) = 0.

[7 marks]
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1.6) The function ¢(r,0,t) satisfies the partial differential equation

10 09 10% _ 09
cor or Trzogr = P

where D is a constant. Separate the equation into three ordinary differential

equations.
[7 marks]
1.7) The generating function for Legendre polynomials P, (x) is
Gz,t)=(1 -2zt +*)7/> =Y Pu(
n>0
where |z| <1 and 0 <{ < 1. Deduce that
Po(=1) = (=D™
[7 marks]
1.8) The generating function for Hermite polynomials H,,(x) is
Z I, ( p20t—1
n>0
Show that I
n(2) =2nH, (z).
dx
[7 marks]
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SECTION B — Answer TWO questions

2) Classify the singular points of the differential equation

2y d
3x2ﬁ+xd—i+(2x— 1)y =0.

[6 marks]
Use the method of Frobenius to show that one solution of the equation is

(-1)
= 1
yo e *;n!mzxsmw |

where ag is a constant, and find the other series solution.
[18 marks]

Show that the series solutions converge for all |z| < oo.
[6 marks]

3) Show that the Fourier transform of an even function f(z) can be written in the
form

gV = 2 /0 " f () cos(2mAz) di

[5 marks]
Prove that the Fourier transform of the function
_J1—z|, for0<jz| <1,
flz) = {0, otherwise,
is given by
sinmA ) 2
A) = X
g(A) ( - )
[15 marks]
Use the inverse Fourier transform to evaluate the integral
> costsin?t
/ COS 2111 gt
0 t
[10 marks]
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4) The generating function for Legendre polynomials is

Gz,t) = Py(a)t" = (1 -2zt +t)7/2,
n>0

where |z| <1 and |t| < 1. Prove that

(n+1)Ppi1(z) — 2n+ 1)zP, () + nPy—1(z) = 0.

[7 marks]

If Po(z) =1 and Py(x) = z, what are Py(x) and P3(z)?
[7 marks]

Express cos§ and cos? § as functions of the Legendre polynomials P, (cos ).
[6 marks]

The solution of Laplace’s equation in spherical polar coordinates (7,0, ¢) in a
problem with azimuthal symmetry can be written in the form

¢(r,0) = Z (Anrn + Bnr_(”“)) P, (cos0).
n>0

Determine the solution for ¢(r, #) in the region r > R which satisfies the bound-
ary conditions that (i) ¢ — 0 as r — oo and (ii) on the surface of the sphere
r=R, ¢(R,0) = cosf — 3cos> 0.

[10 marks]
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5) In plane polar coordinates (r,8) Laplace’s equation is

10 ¢ 1 9%

r(?rr(?r +7"7W =0

By assuming that ¢(r, 0) = ¢1(r)2(0), use the method of separation of variables
to derive two ordinary differential equations for 1 and )s.
[6 marks]

The general solution is single valued as a function of 8, (that is, ¢(r,0) =
¢(r,0 + 2m)) and is not independent of #. Show that

$(r,0) =D (Anr™ + Byur™") (Cp cosnb) + Dy sinnd)
n>1

where A,,, B,,, C,, and D,, are constants.
[10 marks]

Show that the solution which satisfies the boundary conditions that ¢ = 0 at
r =0, and that at r = a,

=V, —m <0<,
¢(a’9>_{u 0<6<m,

is

a a

(r,0) = i F sin @ + % (2)3811139—{— % (£)5sin50+...] X

[14 marks]
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