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SECTION A — Answer SIX parts of this section

Define the unit base vectors {e;;i = 1,2,3} and the scale factors {h;;i=1,2,3}
for a general three-dimensional curvilinear coordinate system.

A particle moving in three dimensions has a position vector r(¢). Show that the
velocity of the particle can be written in the form

3
=1

[7 marks]

State the general filtering theorem for the Dirac delta function. Hence evaluate
the integral

/OO 5(t—1) (1+42) "V ds.

— o0

[7 marks]

A periodic function f(t) with a fundamental period T' = 27 can be represented
by the complex Fourier series

f(t): i Cnemtv

n=—oo

where ¢, is a constant. Show that this Fourier series can be written in the
alternative form

(1) = ;ao =3 [an cos(nt) + by sin(nt)].

Obtain formulae for the constants {a,;n =0,1,2,...} and {b,;n=1,2,...} in
terms of ¢, and c_,, .

[7 marks]

Define the Fourier Transform F[f(t)] of a function f(¢) which is defined on
the interval —oo < t < oo. Calculate the Fourier transform of the Dirac delta
function 6(2t 4+ 1) .

[7 marks]
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1.5) Define the Laplace transform L[f(t)] = F(p) of a function f(¢) which is defined
on the interval 0 < ¢ < oco. Determine the inverse f(t) of the Laplace transform

1

Fo) = =y

[7 marks]
[It may be assumed that L[e*®] = 1/(p — a), where a is a constant and p > a ]

1.6) Explain what is meant by a reqular singular point of a linear differential equation
of second order. Classify all the singular points of the differential equation

2

3 (xz —1) %+m(m+2)j—i+(x—2)y:().
[7 marks]
1.7) Determine the general solution R(r) of the differential equation
r2cf;:j+2rcjl—f —n(n+1)R=0,
by using the trial solution R(r) = r°, where n =0,1,2,... and s is a constant.
[7 marks]

1.8) Use the generating function for Legendre polynomials

(=2t +1%) 72 = 37 Pa(ut”
n=0

where —1 < <1 and |t| < 1, to obtain formulae for Py(i), P1(p) and Pa(p).
[7 marks]
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SECTION B — Answer TWO questions

Show that, for a general curvilinear orthogonal coordinate system (q1, g2, g3),
the gradient of a scalar field ¥(qy, g2, q3) can be written as

e; 0y ey Oy es 0y
dp= 220 L 200 B
grady hi10q1  ha0q2  hs Ogs

where {h;;i = 1,2,3} and {e;;i = 1,2,3} denote the sets of scale factors and
unit base vectors respectively for the coordinate system.

[10 marks]

A particular curvilinear orthogonal coordinate system (q1, q2,¢q3) is defined by
the transformation equations

T = q142C084q3,
Y = q1q28ings,
10,2 2
z= 301 — @),
where ¢ > 0, g2 > 0 and 0 < g3 < 27. Determine the scale factors {h;;i =

1,2,3} and unit base vectors {e;;i = 1,2,3} for this system.
[12 marks]

Hence calculate the gradient of the scalar field

¥(q1,92,93) = (¢ + ¢3) cos g3

at the point P which has curvilinear coordinates g = 1, g2 = 1 and g3 = 7.

Express your answer in terms of the Cartesian unit vectors i, j and k.

[8 marks]

Use the method of Frobenius to derive two independent series solutions of the
differential equation
oy L S (P S
¢ —= + 2z — T — =
dz? dz 4

in powers of ..
[24 marks|

Use the ratio test to prove that the general series solution converges for all
|z] < 0.

[6 marks]
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Show that the Fourier transform F[f(¢)] of an even function f(¢) can be written
in the form

Flft)] = 2/000 f () cos(2mrt) dt .

[6 marks]
Determine the Fourier transform of the even function f(¢) defined by
fie)= 1 for 0<|t| <1,
= -1 for 1<|t|<2,
= 0 for 2<|t|< 0.
[14 marks]
Use the inverse Fourier transform to prove that
oo -
/ smx(l —cosx)dx = T,
0 T 4
[10 marks]

Prove that the Laplace transforms of the functions e® and te®*, where a is a
constant, are

and

provided that p > a.
[8 marks]

Use the Laplace transform method to determine the solution f(t) of the differ-
ential equation

af df >
CT_3Y op— e
gz Sq T
which satisfies the initial conditions f(0) = —3 and f/(0) = 5. Derive any

formulae that are needed in the calculation.

[22 marks|
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