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Motivating GPs from linear regression

In linear regression, had y(x) = wTφ(x)
Gaussian prior on w: p(w) = N (w|0, α−1I)
Joint distribution of N outputs yn ≡ y(xn)?

If y = (y1, . . . , yN )T, Φnj = φj(xn), then y = Φw

Gaussian linear model, so y has Gaussian distribution:

E[y] = 0, E[yyT] = ΦE[wwT]ΦT = α−1ΦΦT

K = α−1ΦΦT has entries
∑

j ΦnjΦmj = α−1φ(xn)Tφ(xm)
Each entry is just as function of xn, xm
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Generalization: Priors over functions

Rephrase prior p(w) as prior p(y) over functions y(x)
The function y(x) is also called a stochastic process

Definition

We say p(y) is a Gaussian process prior, or y(x) is a GP under the
prior, if for any N the distribution of y = (y(x1), . . . , y(xN ))T is

p(y) = N (y|m,K) with Knm = k(xn,xm), mn = µ(xn)

Mean function µ(x), mostly set to zero

Covariance function or kernel k(x,x′)
A kernel k(x,x′) is valid if the Gram matrix K is positive
(semi-)definite for all choices of the x1, . . . ,xN
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Constructing valid kernels

So far: any k(x,x′) = φ(x)Tφ(x′) is valid: scalar product of
basis function vectors (also: ‘feature vectors’)

If k1(x,x′) and k2(x,x′) are valid, also sum
k1(x,x′) + k2(x,x′) is
(covariance function of y1(x) + y2(x))

Similarly product k1(x,x′)k2(x,x′)
(covariance function of y1(x)y2(x))

Multiplication by function of single input: f(x)k1(x,x′)f(x′)
(covariance function of f(x)y1(x))

Multiplication by positive constant: ck1(x,x′)
(special case f(x) =

√
c)

Polynomial with positive coefficients q(k1(x,x′))
(take products to get monomials, then sum)

Exponential exp(k1(x,x′))
(infinite polynomial with positive coefficients)
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Examples of valid kernels

Dot product: k(x,x′) = xTx′

Squared exponential or RBF kernel:
k(x,x′) = exp[−||x− x′||2/(2σ2)]
Ornstein-Uhlenbeck (OU) kernel:
k(x,x′) = exp(−||x− x′||/σ)
Superposition of infinitely many RBF kernels
(e−||x−x′||/σ = (2/π)1/2

R∞
0
ds e−s

2/2e−||x−x′||2/(2s2σ2))

Kernels from generative models: e.g. k(x,x′) = p(x)p(x′) or
k(x,x′) =

∫
p(x|z)p(x′|z)p(z)

Inputs x don’t need to be vectors: strings, sets, . . .
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Samples from GP priors – Smoothness
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Left: RBF kernel, right: OU kernel
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Samples from GP priors – Effects of parameters

(1.00, 4.00, 0.00, 0.00)

−1 −0.5 0 0.5 1
−3

−1.5

0

1.5

3
(9.00, 4.00, 0.00, 0.00)

−1 −0.5 0 0.5 1
−9

−4.5

0

4.5

9
(1.00, 64.00, 0.00, 0.00)

−1 −0.5 0 0.5 1
−3

−1.5

0

1.5

3

(1.00, 0.25, 0.00, 0.00)

−1 −0.5 0 0.5 1
−3

−1.5

0

1.5

3
(1.00, 4.00, 10.00, 0.00)

−1 −0.5 0 0.5 1
−9

−4.5

0

4.5

9
(1.00, 4.00, 0.00, 5.00)

−1 −0.5 0 0.5 1
−4

−2

0

2

4

k(x,x′) = θ0 exp
(
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+ θ2 + θ3xTx′
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Regression with GPs: Likelihood

Already have prior (GP) on “clean” function y(x)
Noise model as before: tn = yn + εn with yn = y(xn) and εn
i.i.d. noise

For Gaussian noise, p(tn|yn) = N (tn|yn, β
−1)

Gives for N training outputs t = (t1, . . . , tN )

p(t|y) =
N∏

n=1

p(tn|yn) = N (t|y, β−1I)

But p(y) = N (y|0,K), so linear Gaussian model:

p(t) =
∫
p(t|y)p(y)dy = N (t|0,C)

with Cnm = k(xn,xm) + β−1δnm
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Illustration
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Predictive distribution

Consider prediction t̂ at x̂
Joint distribution of tN+1 = (t1, . . . , tN , t̂) is Gaussian,
N (tN+1|0,CN+1)
Covariance matrix in block form:

CN+1 =
(

C k
kT c

)
where c = k(x̂, x̂) + β−1 and k has elements k(xn, x̂)
From results for conditional Gaussians, predictive distribution
is also Gaussian,

p(t̂|t) = N (t̂|kTC−1t, c− kTC−1k)

That’s it! No integrals over w etc.

Computational cost dominated by matrix inverse, O(N3)
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Illustration for N = 1
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Illustration for sin dataset
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Comparison w. (parametric) Bayesian linear regression

Previously, used prior on weights p(w) = N (w|0, α−1I) and
noise model p(t|x,w) = N (t|wTφ(x), β−1)
Found Gaussian posterior p(w|t) = N (w|mN ,SN ) with

mN = βSNΦTt, S−1
N = αI + βΦTΦ

Predictive distribution
p(t̂|x̂, t) = N (t̂|mT

Nφ(x̂), β−1 + φ(x̂)TSNφ(x̂))
Should agree with result from GP regression with kernel
k(x,x′) = α−1φ(x)Tφ(x′)
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Marginal likelihood

Hyperparameters θ: noise level β−1 and any kernel
parameters like σ2

Determine as before by maximizing marginal likelihood p(t|θ)
Easy – we already know this:

ln p(t|θ) = lnN (t|0,C) = −1
2

ln |C| − 1
2
tTC−1t− N

2
ln(2π)

Again, no w-integrals

Can optimize numerically (generally multiple local maxima)
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Automatic relevance determination (ARD)

Can generalize from RBF kernel to

k(x,x′) = θ0 exp

[
−1

2

D∑
i=1

ηi(xi − x′i)2
]

Product of valid kernels, so also valid

ηi ≡ 1/σ2
i , so small ηi corresponds to large lengthscale σi

Function y(x) then varies little when xi is changed
⇒ input direction i largely irrelevant

Setting the ηi by maximizing marginal likelihood automatically
determines how relevant different input space directions are
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Effect of varying η2
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Setup for GP classification

Consider binary class labels t ∈ {0, 1}
Latent function a(x): put GP prior on this

Likelihood via activation function:

p(t|a,x) = σ(a(x))t[1− σ(a(x))]1−t

Predictive distribution: write â = a(x̂), an = a(xn), then

p(t̂|t) =
∫
p(t̂|â)p(â|t)dâ

Posterior distribution of â is, with a = (a1, . . . , aN )

p(â|t) =
∫
p(â|a)p(a|t)da

Need to approximate p(a|t), e.g. Laplace approximation

20 / 18


	Discriminative classification
	Bayesian logistic regression & Laplace approximation
	Generative classification

