Discriminative Bayesian logistic regression Generative

Gaussian processes

@ Discriminative classification
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Discriminative

Bayesian logistic regression

Motivating GPs from linear regression
In linear regression, had y(x) = w' ¢(x)
Gaussian prior on w: p(w) = N(w|0,a'T)
Joint distribution of N outputs y,, = y(x,)?
fy=(y,...,yn)", ®nj = @j(xy), then y = dw
Gaussian linear model, so y has Gaussian distribution:

Ely] =0, Elyy'] = ®Eww']|®" = o '®d"

K =a '®®" has entries Zj D, Py = ato(xn) T P(xim)

Each entry is just as function of x,, X,

Generative

)
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Discriminative Bayesian logistic regression Generative

Generalization: Priors over functions
@ Rephrase prior p(w) as prior p(y) over functions y(x)
@ The function y(x) is also called a stochastic process
Definition

We say p(y) is a Gaussian process prior, or y(x) is a GP under the
prior, if for any N the distribution of y = (y(x1),...,y(xxn))T is

p(y) = N(y|m, K) with Ky = kX0, Xm), M = p(Xn)

@ Mean function p(x), mostly set to zero

e Covariance function or kernel k(x,x")

o A kernel k(x,x’) is valid if the Gram matrix K is positive
(semi-)definite for all choices of the x1,...,xx



Discriminative Bayesian logistic regression Generative

Gaussian processes

© Bayesian logistic regression & Laplace approximation

4/18



Discriminative Bayesian logistic regression Generative

Constructing valid kernels

e So far: any k(x,x') = ¢(x)T(x') is valid: scalar product of
basis function vectors (also: ‘feature vectors')

If k1(x,x") and ko(x,x") are valid, also sum
k1(x,x") + ka(x, %) is

(covariance function of y1(x) + y2(x))

Similarly product kq(x,x")k2(x,x")
(covariance function of y1(x)y2(x))
e Multiplication by function of single input: f(x)k1(x,x)f(x)

(covariance function of f(x)y1(x))

Multiplication by positive constant: ckj(x,x’)
(special case f(x) = +/c)

Polynomial with positive coefficients g(k1(x,x’))
(take products to get monomials, then sum)

Exponential exp(k1(x,x"))
(infinite polynomial with positive coefficients)
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Discriminative Bayesian logistic regression Generative

Examples of valid kernels

Dot product: k(x,x’) = x'x/

Squared exponential or RBF kernel:
k(x,x') = exp[~[[x — x'[|*/(20°)]
@ Ornstein-Uhlenbeck (OU) kernel:
k(x,x') = exp(—||x — x'|| /o)
Superposition of infinitely many RBF kernels
(e7 1= 1/o = (2/m)1/2 [ g5 e=s /2= lIx—x'I1?/(25%0%))
o Kernels from generative models: e.g. k(x,x’) = p(x)p(x’) or
k(x,x') = [ p(x|z)p(x'|z)p(z)
@ Inputs x don't need to be vectors: strings, sets, ...
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Discriminative Bayesian logistic regression Generative

Samples from GP priors — Smoothness

-1 -05 0 0.5 1

Left: RBF kernel, right: OU kernel



Discriminative

Samples from GP priors — Effects

Bayesian logistic regression

of parameters
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k(x,x') = 0 exp (=101 |[x — x'|[%) + 62 + O3x T’

Generative
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Discriminative Bayesian logistic regression Generative

Gaussian processes

© Generative classification
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Discriminative Bayesian logistic regression Generative

Regression with GPs: Likelihood

Already have prior (GP) on “clean” function y(x)

@ Noise model as before: t,, = y,, + €, with y,, = y(x,) and €,
i.i.d. noise

For Gaussian noise, p(tn|yn) = N (tn|yn, 371)

Gives for N training outputs t = (¢1,...,tN)

N

p(t|y) = H p(tn|yn) = N(t|Ya ﬁ_ll)

n=1

But p(y) = N (y|0,K), so linear Gaussian model:
p(6) = [ plelyp(y)dy = N(t]o,C)

with Chp = k(Xp, Xim) + ﬁilénm
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Discriminative Bayesian logistic regression Generative

[llustration

-1 0 T 1
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Discriminative

Bayesian logistic regression Generative

Predictive distribution

Consider prediction £ at %

Joint distribution of ty,1 = (t1,...,tN,1) is Gaussian,
N(ty41]0,Cny1)
Covariance matrix in block form:

C k
CN+1=<kT C)

where ¢ = k(%X,%) + 37! and k has elements k(x,,X)

From results for conditional Gaussians, predictive distribution
is also Gaussian,

p(tlt) = N({kTCt, ¢ — kTC k)

That's it! No integrals over w etc.

Computational cost dominated by matrix inverse, O(N?)
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Discriminative Bayesian logistic regression

[llustration for N =1

Generative
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Discriminative Bayesian logistic regression Generative

[llustration for sin dataset
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Discriminative Bayesian logistic regression Generative

Comparison w. (parametric) Bayesian linear regression

@ Previously, used prior on weights p(w) = N (w|0,a~'I) and
noise model p(t|x,w) = N (tjw'p(x),371)
e Found Gaussian posterior p(w|t) = N (w|my, Sy) with

my = Sy®'t, Sy  =al+39"®

@ Predictive distribution
p(f[x,t) = N({lmyp(x), 67" + (%) 'Sy p(x))
@ Should agree with result from GP regression with kernel

k(x,x) = a”'¢(x)To(x')
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Generative

Marginal likelihood

Hyperparameters 0: noise level 5! and any kernel
parameters like o2

Determine as before by maximizing marginal likelihood p(t|@)

Easy — we already know this:
1 1 N
Inp(t|@) = In N (t|0,C) = —iln\cy — 5tTC*lt — ?ln(27r)

Again, no w-integrals

Can optimize numerically (generally multiple local maxima)
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Discriminative Bayesian logistic regression Generative

Automatic relevance determination (ARD)

@ Can generalize from RBF kernel to
1 2
k(x,x') = 0y exp [—2 Zm(xl - x;)Ql
i=1
@ Product of valid kernels, so also valid
° ;= 1/0?, so small 7; corresponds to large lengthscale o;
@ Function y(x) then varies little when z; is changed
= input direction i largely irrelevant
@ Setting the n; by maximizing marginal likelihood automatically

determines how relevant different input space directions are
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Discriminative

Bayesian logistic regression

Effect of varying s

Generative




Gaussian processes

@ Discriminative classification

© Bayesian logistic regression & Laplace approximation

© Generative classification
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Setup for GP classification

Consider binary class labels ¢ € {0,1}
Latent function a(x): put GP prior on this

Likelihood via activation function:

p(tla, x) = o(a(x))'[1 = o(a(x))] "

Predictive distribution: write & = a(x), a, = a(xy,), then

p(ilt) = / p(ila)p(alt)da

Posterior distribution of a is, with a = (a1, ...,an)

p(alt) = / plala)p(alt)da

Need to approximate p(alt), e.g. Laplace approximation
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