
PATTERN RECOGNITION 
AND MACHINE LEARNING
CHAPTER 2: PROBABILITY DISTRIBUTIONS



Parametric Distributions

Basic building blocks:

Need to determine     given 

Representation:        or           ?

Recall Curve Fitting



Binary Variables (1)

Coin flipping: heads=1, tails=0

Bernoulli Distribution



Binary Variables (2)

N coin flips:

Binomial Distribution



Binomial Distribution



Parameter Estimation (1)

ML for Bernoulli
Given: 



Parameter Estimation (2)

Example:

Prediction: all future tosses will land heads up

Overfitting to D



Beta Distribution

Distribution over              .



Bayesian Bernoulli

The Beta distribution provides the conjugate prior for the 
Bernoulli distribution.



Beta Distribution



Prior ∙ Likelihood = Posterior



Properties of the Posterior

As the size of the data set, N         , increase



Prediction under the Posterior

What is the probability that the next coin toss will land 
heads up? 



Multinomial Variables

1-of-K coding scheme:



ML Parameter estimation

Given:

Ensure                  , use a Lagrange multiplier,  ¸.



The Multinomial Distribution



The Dirichlet Distribution

Conjugate prior for the 
multinomial distribution.



Bayesian Multinomial (1)



Bayesian Multinomial (2)



The Gaussian Distribution



Central Limit Theorem 

The distribution of the sum of N i.i.d. random 
variables becomes increasingly Gaussian as N
grows.

Example: N uniform [0,1] random variables.



Geometry of the Multivariate Gaussian



Moments of the Multivariate Gaussian (1)

thanks to anti-symmetry of z 



Moments of the Multivariate Gaussian (2)



Partitioned Gaussian Distributions



Partitioned Conditionals and Marginals



Partitioned Conditionals and Marginals



Bayes’ Theorem for Gaussian Variables

Given

we have

where



Maximum Likelihood for the Gaussian (1)

Given i.i.d. data                             , the log likeli-
hood function is given by

Sufficient statistics



Maximum Likelihood for the Gaussian (2)

Set the derivative of  the log likelihood 
function to zero,

and solve to obtain

Similarly



Maximum Likelihood for the Gaussian (3)

Under the true distribution

Hence define



Contribution of the N th data point, xN

Sequential Estimation

correction given xN

correction weight

old estimate



Consider µ and z governed by p(z,µ) and 
define the regression function

Seek µ? such that f(µ?) = 0.

The Robbins-Monro Algorithm (1)



Assume we are given samples from p(z,µ), one 
at the time.

The Robbins-Monro Algorithm (2)



Successive estimates of µ? are then given by

Conditions on aN for convergence :

The Robbins-Monro Algorithm (3)



Regarding 

as a regression function, finding its root is 
equivalent to finding the maximum likelihood 
solution µML. Thus

Robbins-Monro for Maximum Likelihood (1)



Example: estimate the mean of a Gaussian.

Robbins-Monro for Maximum Likelihood (2)

The distribution of z is Gaussian 
with mean ¹ { ¹ML. 

For the Robbins-Monro update 
equation, aN = ¾2=N.



Bayesian Inference for the Gaussian (1)

Assume ¾2 is known. Given i.i.d. data
, the likelihood function for

¹ is given by

This has a Gaussian shape as a function of ¹ 
(but it is not a distribution over ¹).



Bayesian Inference for the Gaussian (2)

Combined with a Gaussian prior over ¹,

this gives the posterior

Completing the square over ¹, we see that



Bayesian Inference for the Gaussian (3)

… where

Note:



Bayesian Inference for the Gaussian (4)

Example:                                       for N = 0, 1, 2 

and 10.



Bayesian Inference for the Gaussian (5)

Sequential Estimation

The posterior obtained after observing N { 1

data points becomes the prior when we 
observe the N th data point.



Bayesian Inference for the Gaussian (6)

Now assume ¹ is known. The likelihood 
function for  ̧ = 1/¾2 is given by

This has a Gamma shape as a function of ¸.



Bayesian Inference for the Gaussian (7)

The Gamma distribution



Bayesian Inference for the Gaussian (8)

Now we combine a Gamma prior,                      ,
with the likelihood function for ¸ to obtain

which we recognize as                         with 



Bayesian Inference for the Gaussian (9)

If both ¹ and ¸ are unknown, the joint 
likelihood function is given by

We need a prior with the same functional 
dependence on ¹ and ¸.



Bayesian Inference for the Gaussian (10)

The Gaussian-gamma distribution

• Quadratic in ¹.
• Linear in ¸.

• Gamma distribution over ¸.
• Independent of ¹. 



Bayesian Inference for the Gaussian (11)

The Gaussian-gamma distribution



Bayesian Inference for the Gaussian (12)

Multivariate conjugate priors

• ¹ unknown, ¤ known: p(¹) Gaussian.

• ¤ unknown, ¹ known: p(¤) Wishart,

• ¤ and ¹ unknown: p(¹,¤) Gaussian-
Wishart,



where

Infinite mixture of Gaussians.

Student’s t-Distribution



Student’s t-Distribution



Student’s t-Distribution

Robustness to outliers: Gaussian vs t-distribution.



Student’s t-Distribution

The D-variate case:

where                               .

Properties:



Periodic variables

• Examples: calendar time, direction, …

• We require



von Mises Distribution (1)

This requirement is satisfied by 

where

is the 0th order modified Bessel function of the 
1st kind.



von Mises Distribution (4)



Maximum Likelihood for von Mises

Given a data set,                                , the log likelihood function 
is given by

Maximizing with respect to µ0 we directly obtain

Similarly, maximizing with respect to m we get

which can be solved numerically for mML.



Mixtures of Gaussians (1)

Old Faithful data set

Single Gaussian Mixture of two Gaussians



Mixtures of Gaussians (2)

Combine simple models 
into a complex model:

Component

Mixing coefficient

K=3



Mixtures of Gaussians (3)



Mixtures of Gaussians (4)

Determining parameters ¹, §, and ¼ using 
maximum log likelihood

Solution: use standard, iterative, numeric 
optimization methods or the expectation 
maximization algorithm (Chapter 9). 

Log of a sum; no closed form maximum.



The Exponential Family (1)

where ´ is the natural parameter and

so g(´) can  be interpreted as a normalization 
coefficient.



The Exponential Family (2.1)

The Bernoulli Distribution

Comparing with the general form we see that

and so

Logistic sigmoid



The Exponential Family (2.2)

The Bernoulli distribution can hence be 
written as

where



The Exponential Family (3.1)

The Multinomial Distribution

where,                             ,                             and

NOTE: The ´k parameters are 
not independent since the 
corresponding ¹k must 
satisfy



The Exponential Family (3.2)

Let                                . This leads to

and      

Here the ´k parameters are independent. Note 
that

and

Softmax



The Exponential Family (3.3)

The Multinomial distribution can then be 
written as 

where



The Exponential Family (4)

The Gaussian Distribution

where



ML for the Exponential Family (1)

From the definition of g(´) we get

Thus



ML for the Exponential Family (2)

Give a data set,                            , the likelihood 
function is given by 

Thus we have  

Sufficient statistic



Conjugate priors

For any member of the exponential family, 
there exists a prior

Combining with the likelihood function, we get

Prior corresponds to º pseudo-observations with value Â.



Noninformative Priors (1)

With little or no information available a-priori, we 
might choose a non-informative prior.

• ¸ discrete, K-nomial :

• ¸2[a,b] real and bounded: 

• ¸ real and unbounded: improper!

A constant prior may no longer be constant after a 
change of variable; consider p(¸) constant and 
¸=´2:



Noninformative Priors (2)

Translation invariant priors. Consider

For a corresponding prior over ¹, we have

for any A and B. Thus p(¹) = p(¹ { c) and 
p(¹) must be constant.



Noninformative Priors (3)

Example: The mean of a Gaussian, ¹ ; the 
conjugate prior is also a Gaussian,

As              , this will become constant over ¹ .



Noninformative Priors (4)

Scale invariant priors. Consider                                    
and make the change of variable 

For a corresponding prior over ¾, we have

for any A and B. Thus p(¾) / 1/¾ and so this prior is 
improper too. Note that this corresponds to p(ln¾) 
being constant.



Noninformative Priors (5)

Example: For the variance of a Gaussian, ¾2, we have 

If ¸ = 1/¾2 and p(¾) / 1/¾ , then p(¸) / 1/¸.

We know that the conjugate distribution for ¸ is the 
Gamma distribution, 

A noninformative prior is obtained when a0 = 0 and 
b0 = 0.



Nonparametric Methods (1)

Parametric distribution models are restricted 
to specific forms, which may not always be 
suitable; for example, consider modelling a 
multimodal distribution with a single, 
unimodal model.

Nonparametric approaches make few 
assumptions about the overall shape of the 
distribution being modelled.



Nonparametric Methods (2)

Histogram methods partition 
the data space into distinct 
bins with widths ¢i and count 
the number of observations, 
ni, in each bin.

• Often, the same width is 
used for all bins, ¢i = ¢.

• ¢ acts as a smoothing 
parameter.

• In a D-dimensional space, 
using M bins in each dimen-
sion will require MD bins!



Nonparametric Methods (3)

Assume observations drawn 
from a density p(x) and 
consider a small region R
containing x such that

The probability that K out of 
N observations lie inside R
is  Bin(KjN,P) and if N is 
large

If the volume of R, V, is 
sufficiently small, p(x) is 
approximately constant 
over R and

Thus

V small, yet K>0, therefore N large?



Nonparametric Methods (4)

Kernel Density Estimation: fix V, estimate K from 
the data. Let R be a hypercube centred on x and 
define the kernel function (Parzen window)

It follows  that 

and hence



Nonparametric Methods (5)

To avoid discontinuities in p(x), 
use a smooth kernel, e.g. a 
Gaussian

Any kernel such that

will work.

h acts as a smoother.



Nonparametric Methods (6)

Nearest Neighbour 
Density Estimation: fix K, 
estimate V from the data. 
Consider a hypersphere
centred on x and let it 
grow to a volume, V ?, that 
includes K of the given N 
data points. Then

K acts as a smoother.



Nonparametric Methods (7)

Nonparametric models (not histograms) 
requires storing and computing with the 
entire data set. 

Parametric models, once fitted, are much 
more efficient in terms of storage and 
computation.



K-Nearest-Neighbours for Classification (1)

Given a data set with Nk data points from class Ck
and                      ,  we have

and correspondingly

Since                       , Bayes’ theorem gives



K-Nearest-Neighbours for Classification (2)

K = 1K = 3



K-Nearest-Neighbours for Classification (3)

• K acts as a smother
• For                , the error rate of the 1-nearest-neighbour classifier is never more than 
twice the optimal error (obtained from the true conditional class distributions).


