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Likelihood model

Two class (binary) classification, discriminative approach:
need model for p(C1|x,w) = 1− p(C2|x,w)
Keep this ‘almost’ linear in parameter vector w:

p(C1|x,w) = σ(wTφ(x)), σ(a) = 1/(1 + e−a)

σ(a) = logistic sigmoid, ‘squashing’ or ‘activation’ function

Inverse: logit a = ln(σ/(1− σ)), ‘link’ function

Model known as ‘logistic regression’ (but it’s classification!)

Other choices for σ(a) are possible, e.g. inverse probit

σ(a) =
∫ a

−∞
N (θ|0, 1)dθ
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Activation functions
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Red: logistic sigmoid; blue: inverse probit

3 / 18



Discriminative Bayesian logistic regression Generative

Likelihood model

Represent class C1 as t = 1, C2 as t = 0, then

p(t|w) =
N∏

n=1

ytn
n (1−yn)1−tn , yn = p(C1|xn,w) = σ(wTφ(xn))

Maximum likelihood minimizes cross-entropy error function

E(w) = − ln p(t|w) = −
∑

n

[tn ln yn + (1− tn) ln(1− yn)]

Gradient:

∇E(w) =
∑

n

(yn − tn)φ(xn) = ΦT(y − t)
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Likelihood model (2)

Hessian of E:

∇∇E(w) =
∑

n

yn(1− yn)φ(xn)φ(xn)T = ΦTRΦ

with R = diagonal matrix, Rnn = yn(1− yn)
Positive definite ⇒ E is convex, only has a single minimum

So p(t|w) is log-concave, only has a single maximum

Can be found efficiently numerically (iterative reweighted least
squares)
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Generalizations

Allowing labelling noise:

p(C1|x,w) = (1− ε)σ(wTφ(x)) + ε[1− σ(wTφ(x))]
= ε+ (1− 2ε)σ(wTφ(x))

Classification into K > 2 classes: use ‘softmax’

p(Ck|x,w1 . . .wK) =
exp(ak)∑
j exp(aj)

, ak = wT
k φ(x)

Likelihood for 1-of-K coding tn is then

p(t1 . . . tN |w1 . . .wK) =
N∏

n=1

K∏
k=1

ytnk
nk

with ynk = exp(ank)/
∑

j exp(anj) and ank = wT
k φ(xn)
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Prior and posterior

Need to put a prior on w; could choose as for linear regression
p(w) = N (w|0, α−1I)
Gives for posterior p(w|t) ∝ p(t|w)p(w)

ln p(w|t) = −E(w) + const.

E(w) =
α

2
wTw −

∑
n

[tn ln yn + (1− tn) ln(1− yn)]

Need to normalize and then integrate to get predictions

p(C1|x, t) =
∫
p(C1|x,w)p(w|t)dw

Not a Gaussian integral – but p(w|t) has a single maximum

So approximate by a Gaussian around this maximum:
Laplace approximation
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Laplace approximation
In one dimension

Consider a generic p(w) = exp[−E(w)]/Z, Z = normalization
constant (‘partition function’)

If p(w) has a single maximum at w0, can expand around there:

E(w) ≈ E(w0) +
1
2
E′′(w0)(w − w0)2

Gives Gaussian approximation for p(w):

p(w) ≈ q(w) =
e−E(w0)

Z
e−

E′′(w0)
2

(w−w0)2 = N (w|w0, 1/E′′(w0))

Approximation for Z:

Z = e−E(w0)(2π)1/2[E′′(w0)]−1/2
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Laplace approximation
Illustration
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Laplace approximation
In M dimensions

Consider again p(w) = exp[−E(w)]/Z
If p(w) has a single maximum at w0, can expand around
there:

E(w) ≈ E(w0) +
1
2
(w −w0)TA(w −w0)

where A = ∇∇ E(w)|w=w0
= Hessian at minimum of E

Gives Gaussian approximation for p(w):

p(w) ≈ q(w) =
e−E(w0)

Z
e−

1
2
(w−w0)TA(w−w0) = N (w|w0,A−1)

Approximation for Z:

Z = e−E(w0)(2π)M/2|A|−1/2
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Back to Bayesian logistic regression

Posterior p(w|t) = exp[−E(w)]/Z with

E(w) =
α

2
wTw −

∑
n

[tn ln yn + (1− tn) ln(1− yn)]

E(w) convex, single minimum, Hessian αI + ΦTRΦ

Find minimum wMAP, call Hessian there S−1
N

Then Laplace approximation for posterior is

p(w|t) ≈ q(w) = N (w|wMAP,SN )
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Predictive distribution

Use approximate posterior:

p(C1|x, t) ≈
∫
p(C1|x,w)q(w)dw =

∫
σ(wTφ(x))q(w)dw

Call a = wTφ(x), then a has Gaussian distribution, with

E[a] =
∫

wTφ(x) q(w)dw = wT
MAPφ(x)

E[a2] =
∫

φ(x)TwwTφ(x) q(w)dw

= φ(x)T(wMAPwT
MAP + SN )φ(x)

So

p(C1|x, t) ≈
∫
σ(a)N (a|wT

MAPφ(x),φ(x)TSNφ(x)) da

Can be done numerically, or analytically for inverse probit
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Generative classification

We model joint distribution p(x, Ck), rather than conditional
distribution p(Ck|x) of class labels

Normally separate p(x, Ck) = p(x|Ck)p(Ck)
Class probabilities p(Ck|π) = πk

Class conditional densities e.g.

p(x|Ck, {µj},Σ) = N (x|µk,Σ)

For two classes this gives

p(C1|x) = σ(wTx + w0)

Linear discriminant as before, logistic sigmoid arises naturally

If classes have different Σ, get quadratic discriminant
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Illustration
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Maximum likelihood inference

Consider two classes, so that π1 ≡ π, π2 = 1− π
Training data: N inputs xn, N outputs tn ∈ {0, 1}
Collect into XT = (x1, . . . ,xN ) and t = (t1, . . . , tN )
tn = 1 for C1, tn = 0 for C2
Likelihood: p(x, t = 1) = p(x|C1)p(C1) = πN (x|µ1,Σ)
Similarly, p(x, t = 0) = p(x|C2)p(C2) = (1− π)N (x|µ2,Σ)
Overall data likelihood p(t,X|π,µ1,µ2,Σ) =

N∏
n=1

[πN (xn|µ1,Σ)]tn [(1− π)N (xn|µ2,Σ)]1−tn

Can be maximized in closed form
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Bayesian inference

Allow Σ1 6= Σ2 now so each p(x|Ck) has its own parameters

Likelihood factorizes: p(t,X|π,µ1,µ2,Σ) =

N∏
n=1

πtn(1− π)1−tn
∏

n:tn=1

N (xn|µ1,Σ1)
∏

n:tn=0

N (xn|µ2,Σ2)

So if prior factorizes into p(π)p(µ1,Σ1)p(µ2,Σ2), then
posterior p(π,µ1,Σ1,µ2,Σ2|t,X) factorizes in the same way

Predictive distributions simplify accordingly, e.g. p(x, C1) =∫
dπ π p(π|t,X)×

∫
dµ1dΣ1N (x|µ1,Σ1)p(µ1,Σ1|t,X)

Effectively, each class density models p(x|Ck) is learnt
separately from training data with class label k

Conjugate priors p(µk,Σk): Gamma-Wishart
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