

## ICSE CBSE IGCSE ALEVEL IB IIT IGNOU TYbcom

### BACHELOR IN COMPUTER APPLICATIONS

#### Term-End Examination

June, 2008

## CS-601: DIFFERENTIAL AND INTEGRAL CALCULUS WITH APPLICATIONS

Time: 2 hours Maximum Marks: 60

**Note:** Question number 1 is **compulsory**. Answer any **three** questions from the rest. Use of calculator is allowed.

(a) A function f(x) is defined as follows:

$$f(x) = \begin{cases} x+1 & x < 1 \\ x-1 & x > 1. \end{cases}$$

Discuss the continuity at x = 1.

(b) Evaluate

$$\lim_{x\to 0} \frac{x^2 - 2x}{\sin 3x}$$

(c) A balloon which remains spherical has a diameter  $\frac{3}{2}$  (2x + 3). Determine the rate of change of volume w.r.t. x.

# THE EXAM PAPERS COM

## ICSE CBSE IGCSE ALEVEL IB IIT IGNOU TYbcom

(d) Find the point on the curve

$$y = 2x^3 - 3x + 5$$

at which the tangent makes an angle of 45° with the positive direction of x-axis.

(e) If  $\sin y = x \sin (a + y)$ , prove that

$$\frac{dy}{dx} = \frac{\sin^2(a+y)}{\sin a}.$$

(f) A particle is moving in a straight line according to the formula

$$x = t^3 - 9t^2 + 3t + 1$$

where x is measured in metres and t in seconds. When the velocity is -24 m/s, find the acceleration.

(g) Can Rolle's theorem be applied to the following function? Find 'C' in case it can be applied.

$$f(x) = x^3 - 2x$$
 on [0, 1]

(h) Evaluate

$$\int x^3 e^{x^4} dx$$

(i) By means of graph discuss the continuity of the following function:

$$f(x) = \begin{cases} 7 & x > 0 \\ 0 & x \le 0 \end{cases}$$



## ICSE CBSE IGCSE ALEVEL IB IIT IGNOU TYbcom

Everything About IGNOU

For More Papers Visit http://www.IGNOUGuess.com

(j) State which of the following are even functions and which are odd:

(i) 
$$f(x) = 7x^2 - 11$$

(ii) 
$$f(x) = 2x^2 - 13x$$

(iii) 
$$f(x) = \tan x$$

(iv) 
$$y = \sec 2x$$

(v) 
$$f(x) = \sin^3 x$$

(vi) 
$$f(x) = e^{3x} - e^{-3x}$$

 $10 \times 3 = 30$ 

2. (a) Find the value of K for which the function

$$f(x) = \begin{cases} \frac{\sin 5x}{3x}, & x \neq 0 \\ K, & x = 0 \end{cases}$$

is continuous at x = 0.

(b) Evaluate

$$\lim_{x\to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

(c) Show

$$\frac{dy}{dx} = \frac{-1}{2(1+x^2)}$$
 if  $y = \tan^{-1}(\sqrt{1+x^2} - x)$ 

3+3+4

(a) Find the equation of the tangent and the normal to the curve

$$y = 5x^2 - 2x + 3$$

at (1, 6).



## ICSE CBSE IGCSE ALEVEL IB IIT IGNOU TYbcom

Everything About IGNOU

For More Papers Visit <a href="http://www.IGNOUGuess.com">http://www.IGNOUGuess.com</a>

(b) Evaluate

$$\int x^2 \cos x \, dx$$

(c) For the function

$$S = K \times (4r^2 - x^2).$$

find the value of x for which S is maximum, K and r are constant. 3+3+4

4. (a) Evaluate

$$\int_{0}^{\pi/2} \sqrt{\sin x} \cos x \, dx$$

(b) Find the area bounded by

$$y^2 = 9x \quad \text{and} \quad x^2 = 9y.$$

(c) Find the perimeter of the cardioid

$$r = a (1 + \cos \theta)$$

3+3+4

5. (a) If  $y = (\sin^{-1} x)^2$ , prove that  $(1 - x^2) y_2 - xy_1 - 2 = 0$ .

Using Leibnitz's theorem, show that

$$(1 - x^2) y_{n+2} - (2n + 1) xy_{n+1} - n^2 y_n = 0$$

(b) The velocity v (km/min) of a moped which starts from rest, is given at fixed intervals of time t (min) as follows:

| t | 0 | 2  | 4  | 6  | 8  | 10 | 12 | 14 | 16 | 18 | 20 |
|---|---|----|----|----|----|----|----|----|----|----|----|
| υ | 0 | 10 | 18 | 25 | 29 | 32 | 20 | 11 | 5  | 2  | 0  |

Estimate approximately the distance covered in 20 minutes. 5+5