
 1

Vibrations and Waves 
Problem Sheet 1: Answers 

 
1. Note: to be consistent with notation in lectures, a “~” has been put over the complex functions. 

i. x~ ( t ) = 2 exp( i6t ) = 2[cos( 6t ) + i sin( 6t )] ⇒ Re[ x~ ( t )] = 2cos( 6t ) 
ii. x~ ( t ) = i 3exp( i5t ) = 3[i cos( 5t ) – sin( 5t) ] ⇒ Re[ x~ ( t )] = –3sin( 5t ) 
iii. x~ ( t ) = (2 + i 3)exp( i6t) = (2 + i 3)[cos( 6t) + i sin( 6t)] = 2cos( 6t ) – 3sin( 6t) + i[3cos( 

6t ) + 2sin( 6t) ] ⇒ Re[ x~ ( t )] = 2cos( 6t ) – 3sin( 6t). This is not in a very useful form to 
see what’s going on. Better if we can get the answer in the form  Acos( ωt + ϕ ). This can 
be done by writing ( 2 + 3i ) in our original x~ ( t ) in the form Rexp( iθ ), where 

22 32 +=R  = 3.61 and θ = arctan( 3/2 ) = 56.3° = 0.983rad. So x~ ( t ) = 3.61exp(i 0.983 
)exp(i 6t )= 3.61exp[ i(6t + 0.983 )] = 3.61[cos( 6t + 0.983) + i sin( 6t + 0.983 )] ⇒ Re[ x~ ( 
t ) ] = 3.61cos( 6t + 0.983 ). 

iv. R x~ ( t ) = ( 1 – 5i )exp( i2t ) = ( )22 51 −+ exp[ i arctan( –5 ) ]exp( i2t ) =     5.10exp( –i 
1.37 )exp( i2t ) = 5.10exp[ i( 2t – 1.37 )] = 5.10[ cos( 2t – 1.37 ) +           i sin( 2t – 1.37 ) ] 
⇒ Re[ x~ ( t )] = 5.10cos( 2t – 1.37 ). 

2.  
i. x( t ) = 5cos( 8t) ⇒ x~ ( t ) = (5 + i 0)exp( i8t ) – check: Re[ x~ ( t )] = 5 cos( 8t ). 
ii. x( t ) = 5cos( 8t + 0.2π ) ⇒ x~ ( t ) = 5exp[ i( 8t + 0.2π ) ] = 5exp( i 0.2π )exp( i8t ) = 5[cos( 

0.2π ) + i sin( 0.2π )]exp( i8t ) = (4.05 + i 2.94)exp( i8t ). 
iii. x( t) = 7cos( 5t – 0.3π ) ⇒ x~ ( t ) =7exp[ i( 5t – 0.3π ) ] = 7exp( –0.3π )exp( i5t ) =  7[ cos( 

–0.3 π ) + i sin( –0.3π ) ]exp( i5t ) = ( 4.11 – i 5.66)exp( i 5t ). 
iv. x( t ) = 5sin( 7t ) = 5cos( π/2 – 7t) = 5cos( 7t – π/2 )⇒ x~ ( t ) = 5exp[ i( 7t – π/2)] = 5exp( -

iπ/2)exp( i7t ) = 5[ cos(–π/2 ) + i sin(–π/2) ]exp( i7t ) = (0 – i 5)exp( i7t ). 

3.  x( t ) = 0.05cos( 7.51 t ) 
i. amplitude A = 0.05 m 
ii. ω = 7.51 rad/s = 7.51 /s (although rad is dimensionless, keeping the rad in the units 

reminds us that its an angular frequency). 
iii. f = ω/(2π) = 1.20 Hz 
iv. T = 1/f = 0.84 s 
 ω2 = s/m ⇒ s = mω2 = 0.1 kg (7.51 rad/s)2 = 5.64 kg /s2 = 5.64 N/m 
 Assume spring stretches a distance L downwards (in positive x-direction). The restoring 
force due to spring is –sL (in negative x-direction, i.e. up). Spring will stretch until this 
restoring force balances force of gravity mg (in positive x-direction), i.e.       mg – sL = 0 ⇒ L 
= mg/s = (0.1 x 9.8) N/5.64 N/m = 0.17 m 

4. x( t ) = Acos( 4t + ϕ ), v(t) = dx/dt = -4Asin( 4t + ϕ ) 
i. x( 0 ) = 0.3 m ⇒ Acosϕ = 0.3 m; v( 0 ) = 0 ⇒ –4Asinϕ = 0 ⇒ ϕ = 0, so Acos0 =  0.3 m ⇒ 

A = 0.3 m.  
ii. x( 0 ) = –0.5m ⇒ Acosϕ = –0.5 m; v( 0 ) = 0 ⇒ -4Asinϕ = 0 ⇒ ϕ = 0 so Acos0 =    –0.5m 

⇒  A = -0.5m 
iii. x ( 0 ) = 0 ⇒ Acosϕ = 0 ⇒ ϕ = π/2; v( 0 ) = 1.2 m/s ⇒ -4Asin(π/2 ) = 1.2 m/s ⇒    A = -

0.3 m. 

5.  
i. When the liquid in the left and right hand sides of the tube is not at the same height, there 

is a force on the liquid due to the weight of the displaced liquid. If the height of the liquid 
on the left hand side goes up by x, the height on the right hand side must go down by x 
(assuming a constant cross section of the tube and an incompressible liquid), so the 
difference in the heights is 2x. The mass of this amount of liquid is m = area × height × 
density = A2xρ, so the weight is F = –mg = – (2Aρg)x (minus sign ⇒ down). This provides 
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a restoring force proportional to x and in the opposite direction to the motion (⇒ Hooke’s 
Law so we expect SHM). By Newton II, Ma = restoring force, where a = d2x/dt2 is the 
acceleration of the liquid and M = ALρ is the total mass of liquid in the tube. Therefore 
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−=  as required. 

ii. We know that the general solution for this kind of equation is x( t ) = Acos( ωt + ϕ). Let’s 
use the complex form ( ) ( )[ ]ϕω += tiAtx exp~  (remembering that the actual displacement x( 
t) is just the real part of this) to check this, and to derive an expression for ω. 
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dt
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 Substitute x~ , 2

2~

dt
xd  into equation of 

motion to get: ω2 = 2g/L, so ( ) ( )[ ]ϕω += tiAtx exp~  is a solution provided Lg2=ω . The 
initial conditions are x( 0 ) = h ⇒ Acosϕ = h; and v( 0 ) =0 ⇒ –Aωsinϕ = 0 ⇒ ϕ = 0. 
Therefore, Acos0 = h ⇒ A = h. Therefore exact solution for this situation is 
( ) ( )[ ] ( )[ ]tLghtxtx 2cos~Re ==  

iii.  Liquid oscillates at angular frequency Lg2=ω . 
iv. v( t ) = –hωsin( ωt ) 
v. a( t ) = –hω2cos( ωt ) 
vi. Work done displacing liquid from position x to x+dx is dW = –Fdx = 2Aρgxdx. PE is total 

work going from 0 to x: 2
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viii. Total energy E = PE + KE = 2ghAρ  which is constant, as expected. 
ix. KE( x ) = E – PE( x ) = ( )22 xhgA −ρ  
 

6. Taylor series expand U(x) about x0:  
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Because x0 is a stable equilibrium, U ′(x0) = 0 and U ′′(x0) > 0 (local minimum – see fig. below). 
Therefore the force ( ) ( ) xdxdUxF −=  is given by ( ) ( )( ) ( )( ) K−−′′′−−′′−= 2
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since U(x0) = const. For sufficiently small displacements, (x – x0), we can neglect the second term 
proportional to (x – x0)2 and higher order terms compared to (x – x0), and because U ′′(x0) > 0 we 
can write ( ) ( )0xxsxF −−=  where s > 0. Hence there is a restoring force (minus sign) that is linear 
in the displacement from equilibrium. Note: in the lectures we set the equilibrium position to be at 
x  = 0 for convenience, which leads to the familiar form of Hooke’s Law ( ) sxxF −= . 
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