
Professional Skills for Physicists: II

Problem Solving: Section D
Longer questions and 2007 test paper

LQ 1:

(a) The Fermi energy EF of the free electron gas in a metal de-
pends on the following: ne, the number density of electrons; me, the
mass of the electron, and h̄ (Planck’s constant divided by 2π). It
accordingly takes the form:-

EF = Cnu
em

v
eh̄

w

where the numerical constant, C, is 4.8 in SI units. Use dimensional
arguments to find the required values of the numerical constants, u,
v and w.

(b) The density of electrons in metallic sodium is 2.7×1028 m−3.
Estimate the Fermi energy of the electrons in Joules and in electron
volts.
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LQ 2:

(a) By considering the electrostatic force between two point charges
e, or otherwise, show that the dimensions of (e2/εo) are required to
be ML3T−2. (As usual εo is the permittivity of free space.)

(b) The binding energy of the lowest state of the hydrogen atom
according to the Bohr model is given by the formula:-

E1 = khαmβ(e2/εo)
γ,

where k is a numerical constant and h and m are respectively Planck’s
constant and the mass of the electron. Use dimensional analysis to
obtain numerical values for the powers α, β and γ.

(c) Given that k = 1
8, obtain an estimate of the energy E1, in electron

volts.

(d) Write down an estimate – however rough – of the radius of the
hydrogen atom (the radius of the lowest Bohr orbit). Use it to find
an approximate value for the density of hydrogen assuming that the
atoms are packed with the mean atomic spacing equal to twice their
radii. Compare your answer with

(i) the density of hydrogen gas at STP,

(ii) the mean density of the planet Neptune (mass 1026 kg, radius
25000 km, and composed mainly of hydrogen).

What can you deduce from this about the physical state of Nep-
tune’s interior?

LQ 3:

Applying simple physical ideas as appropriate, estimate the follow-
ing quantities:

(a) The land area needed for a terrestrial 1000 MW solar power
station, given that the Sun radiates at a power of 4×1026 W,

(b) The power required to keep the air in a house warm in winter,
if draughts cause the complete replacement each hour of the warm
air by cold air from outside.
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LQ 4: A tougher example

(a) A new system of units is devised in which unit length remains 1
metre, but the units of time and mass are so chosen that the speed
of light c and the gravitational constant G are both of magnitude
unity. What will be the new unit of mass in kg?

(b) Particle physicists find it convenient to use a different simplified
system of units in which the speed of light, only, is taken to be unity.
This enables the use of the following expression for the total energy
E of a particle with rest mass mo:

E2 = p2 + m2
o,

where p is the particle momentum. If an electron is claimed to have
an energy of 1.5 MeV, what will its momentum be in MeV/c (to within
about 10 percent)?

LQ 5:

There is a physical effect such that electromagnetic waves are shielded
from penetrating electrically-conducting material beyond a repre-
sentative depth, δ, with the consequence that wave amplitude de-
clines inwards according to:

A(x) = A(0) exp(−x/δ),

where x = 0 at the surface of the conductor and x increases with
depth into the conductor, and δ is the ‘skin depth’ given by:

δ =
1

√
πσνµrµo

.

In this expression ν is the frequency of incident radiation, σ is the
conductivity of the material and µr is its relative permeability.

(a) Show that δ has the required dimensions of length.

(b) Estimate the skin depth of copper when illuminated by visible
light. At room temperature the conductivity of copper is approxi-
mately 6×107 Ohm−1 m−1. Assume its relative permeability to be 1.

(c) One result of this ‘skin effect’ is that alternating current carried by
a metal wire is excluded from all but a thin outer skin of the wire, of a
thickness comparable with δ. Consider another – how, qualitatively,
might this skin effect also explain the visible appearance of a metal
like copper or aluminium?
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LQ 6:
(a) Carry out an estimation to confirm that the mass density of air at
normal temperature and pressure (i.e. at STP) is about 1 kg m−3.
(b) Giving some justification for the value you choose, estimate the
mean wind speed that would be measured at the top of the Blackett
Laboratory.
(c) If a request to build a windmill of blade area 1 m2 were not
blocked by local residents, and it was built, estimate the mean power
such a windmill would generate.
(d) An adult cyclist averages 5 m s−1 in London, and has to stop
every 200 m, typically. Estimate the mean energy per kilometre that
the cyclist will dissipate
(i) due to wind resistance, (ii) due to breaking to stop.
(e) Our cyclist, who commutes into Blackett daily, gets lazy and de-
cides to buy an electric bike. But she is so racked by environmental
guilt, that she decides to charge it up only through the Blackett roof
windmill. How close to college must the cyclist live for this to be a
viable commuting solution?

LQ 7: [This is adapted from part of a previously set question in a level 2 option paper.

The numerical estimation is the challenge, not concept – it really doesn’t matter at all in

the manipulation and evaluation that the electrons within the white dwarf find themselves

in a ‘degenerate gas’. Just pick out and follow the instructions.]

(i) A white dwarf may be treated as a uniformly dense sphere of
mass density ρ comprising nuclei of C and O, permeated by a de-
generate gas of free electrons. Use the assumption that the num-
ber of electrons is equal to half the number of nucleons, to relate
the electron number density ne to the total mass density (ρ).
(ii) For such a uniformly dense sphere of radius R and mass M ,
the central pressure is Pc = 3 GM 2/(8πR4). Equate this to the
pressure of a degenerate non-relativistic free-electron gas, P =
h̄2(3π2)2/3n5/3

e /(5me), and transform your expression into a relation
between radius and mass for a white dwarf.
(iii) Derive an approximate value for the radius of a white dwarf of
mass 1 M�, expressing your answer in units of the solar radius, R�.
Astronomical observations imply typical white dwarf radii of close to
0.01R�. Is the difference between your numerical estimate and this
finding acceptable?
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Problem Solving Test

Friday, April 27, 2007: 10.00-11.30

Instructions:

Attempt question 1 and one other (one of questions 2, 3 or 4). Write the
answer to each question in a separate answerbook.

Each question is worth 50 % of the total marks available, if it is answered
legibly, with clear reasoning, and correctly. In the right-hand margin of each
question you will find an indicative marking scheme.

No electronic calculators are to be used.

Please ensure the test paper supplied to you includes all 4 questions, and
also the list of common physical and astronomical constants (3 pieces of
paper, altogether).
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Question 1. (Compulsory)

When two flat plates are brought very close together in a vacuum, there is
an attractive force between them that is not due to gravity or any charge on
them. This surprising phenomenon is known as the Casimir Effect, and the
force is due to the “vacuum energy”, a construct that is explained by quantum
field theory.

The force between the two plates per unit area – in effect, a pressure P – is
known to depend on the speed of light, Planck’s constant, and the distance d
between the two plates.

(a) Use the technique of dimensional analysis to show that P = κhc/dn,
where κ is a numerical constant of proportionality, and n is a positive integer. [5]

(b) Estimate the value of κ, to within a few percent, given that the Casimir Ef- [4]
fect produces the equivalent of 1 standard atmosphere of pressure (1.01×105

Nm−2) when the plates are separated by 10.6 nm.

(c) By how much, as a rough percentage, would the value for the constant κ
change if the supplied value for d had been rounded down to 10 nm? [4]

(d) Estimate the pressure when the plates are separated by 1 mm. [3]

(e) It was asserted above that the attractive force cannot be attributed to
Newtonian gravity. Comment briefly on how, by analysis and calculation, you
could demonstrate this assertion is correct, for a circumstance like that envis- [4]
aged in part (b). What difficulties stand in the way of doing this with anything
better than order of magnitude accuracy? Do not perform any calculations.
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Question 2.

The moment of inertia, I, of a solid about a specified rotation axis is ob-
tained by integrating over the mass moment distribution about the rotation
axis. Seen in dimensional terms, I is equivalent to the mass M of the
object multiplied by the square of an appropriately-weighted radius. This
“appropriately-weighted radius” is what is known as the radius of gyration, k,
which allows the moment of inertia for any solid to be written as I = Mk2.
The more closely the mass of an object is packed around the axis of rotation,
the smaller k will be (compared to the object’s actual size). Use this way of
expressing the moment of inertia in considering the following problem:

(a) Consider a ball rolling down a slope such that it does not slip. Establish [5]
an equation relating the loss of gravitational energy to the translational and
rotational kinetic energies gained. Your equation should involve h the vertical
height lost by the ball, the ball’s translational speed v, its radius r and radius
of gyration k.

(b) Two balls are let go at the top of the same slope at the same time. They
are of the same mass but one is hollowed out, while the other is solid and [6]
uniform. Using your energy equation, work out whether the two balls – which
roll down without slipping – reach the bottom of the slope at the same time.
If one of them does reach the bottom first, which will it be?

(c) A tennis ball and a cricket ball are about the same size, although a tennis
ball is rough-textured and essentially hollow, while a cricket ball is smoother,
more massive and close to being a uniform solid. These are allowed to roll [6]
down a slope such that, when they reach the bottom, they are 1 metre below
where they started from at the top. Estimate their respective radii of gyration
and translational speeds at the foot of the slope.

(d) In the above, it has not been necessary to specify the angle of the slope. [3]
Why not? What would it be about the physics of balls rolling down slopes
that would make this angle relevant? Give your opinion on this in two or
three sentences, drawing on the example you have just done.
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Question 3.

The London Underground has a problem with waste heat: from data gathered
in 2005-6, it is known that London Underground uses close to 500 GW-hours
in one year, and that about half of it is currently released (i.e. wasted) as
heat. The tube network is just over 400 km long, with roughly half of it actually
under ground, and there are about 275 stations.

(a) Using the above data, estimate the rate of heat wastage into the tunnels [4]
of the network.

(b) Transport for London wants to limit the difference between the ambient air
temperature and the temperature of under-ground air to 5 K (being anxious to
avoid the scandal of dead tube passengers on a globally-warmed summer’s
day). Given the rate of heat wastage you just calculated, what would be the
maximum timescale, ∆t, within which it would be necessary to completely
replace the air in the underground tunnels to keep within this limit. [6]

(c) Currently, the air in the tunnels is exchanged by using platform fans that
are fed tunnel air delivered by the movement of trains through the tunnels –
the so-called piston effect.

It is known from modelling cars in a tunnel that the volume of air exchanged
per unit time can be written:

L =
Atv√

ξAt

NcAv
+ 1

,

where At and Av are the cross-sections of the tunnel and vehicles passing
through, respectively. The average vehicle speed is v. The coefficients, ξ and
c, are hydrodynamic resistance and drag coefficients, while N is the number
of vehicles in the tunnel.

(i) Is the equation dimensionally sound? What can you say, dimensionally,
about the ratio of coefficients ξ/c in the denominator? [3]

(ii) Assuming that the value of ξ/c is of order unity, perform a rough numerical
calculation to see how useful the piston effect is in replacing London Under- [5]
ground tunnel air.

(d) Comment on your result: does this amount to a workable system, and
how would you cool the tunnel and platform network more efficiently if this is [2]
or were to become necessary.
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Question 4.

(a) Show that what is known as the solar constant, i.e. the radiant energy [4]
from the Sun passing through unit area in unit time into the Earth’s atmo-
sphere, is about 1.4 kW m−2.

(b) Estimate the number of photons from the Sun incident per unit time, per
unit area, at the surface of the Earth. You may assume that all of the Sun’s [4]
emission takes place in the green part of the spectrum (λ ∼ 500 nm). Also
note the atmosphere removes two-thirds of the incident solar radiation before
it reaches the Earth’s surface.

(c) By considering dimensions or otherwise, show that momentum per unit [3]
time per unit area is equivalent to both pressure and an energy density.

(d) A single photon carries a momentum of hν/c where ν is the frequency
of radiation, h is Planck’s constant and c is the speed of light. Evaluate the [5]
maximum pressure due to sunlight at the Earth’s surface.

(e) The world’s most powerful laser can currently generate 1×1015 W of
radiant power. If this laser is focused to a small circular spot of radius [4]
r = 10 µm, derive an order of magnitude estimate for the pressure produced
at the target surface. Express your answer in atmospheres (1 atmosphere
'1.0×105 N m−2).
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Common physical and astronomical constants

Speed of light in a vacuum, c: 3 ×108 m s−1

Planck’s constant, h: 6.6 ×10−34 J s
Universal gravitational constant, G: 6.7 ×10−11 N m2 kg−2

Permittivity of the vacuum, εo: 8.8 ×10−12 F m−1

Permeability of the vacuum, µo: 4π× 10−7 H m−1 (or N A−2)
Electron rest mass, me: 9.1 ×10−31 kg
Proton rest mass, mp: 1.7 ×10−27 kg
Electron charge, e: 1.6 ×10−19 C
Boltzmann’s constant, k: 1.4 ×10−23 J K−1

Stefan’s constant, σ: 5.7 ×10−8 J m−2 s−1 K−4

Avogadro’s number, NA: 6.0 ×1023 mol−1

Molar gas constant, R: 8.3 J K−1 mol−1

Volume occupied by 1 mole of gas at STP: 22.4 litres
Mass density of water: 1 kg litre−1

(Note:
1 litre = 0.001 m3)

Mass of the Sun, M�: 2 ×1030 kg
Radius of the Sun, R�: 7 ×108 m
Luminosity of the Sun, L� 3.8 ×1026 W
Mass of the Earth, ME: 6 ×1024 kg
Radius of the Earth, RE: 6400 km
Mean radius of Earth’s orbit around Sun: 1.5 ×1011 m
Acceleration due to gravity on Earth’s surface, g: 9.8 m s−2

Length of the tropical year: 3.2 ×107 s
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