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12 A physics toolkit

In the course of learning physics you build up a toolkit of concepts and equa-
tions. When faced with the questions asked at the end of section B, the
crucial first step is to select the right tools from the toolkit. To evaluate the
importance of gravity in the atom, the important tools were (i) the equation for
gravitational potential (ii) the approximate relationship between density, the
mass of a proton and the size of an atom (iii) the idea that kT is of order the
thermal energy of an electron at temperature T (iv) that an electron cannot
be bound to an atom by gravity if its kinetic energy is much greater than the
gravitational potential energy.

To be a good physicist you need to build up your toolkit, and to develop the
skill of choosing the right tool from it.

So, what are the basic results in physics that you carry around in your instant-
recall memory all the time? Newton’s laws of motion? the universal law of
gravitation? Coulomb’s law? the ideal gas laws? Ohm’s law? ...the laws or
equations of anyone else? E=mc2? What about commonly used expressions
that don’t quite make it to the status of being a named law?

Exercise 12.1: Review which of these concepts, or others, are at
your fingertips, and compare with your colleagues. There is likely
to be a lot in common and it can be instructive to consider what is
’most fundamental’, and hence essential.

13 Energy is the most useful tool

The examples in the section 11 were mainly about energy: energy is the
capacity to do work, so the physical effect with the most energy associated
with it will have the greatest capacity to do work and therefore dominate
other effects. Hence, the associated energy is a good guide to the relative
importance of contributing physical effects. For example, the gravitational
energy in an atom was shown in section 10 to be so small that gravity cannot
play a significant role in holding atoms together.

Exercise 13.1: Think of another case in which an energy argument
can be used to show that a physical effect is unimportant.
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14 An energy toolkit

Many examples in the previous sections compared one form of energy with
another, so an important part of the physicist’s toolkit is a list of different
expressions for energy. Some of the most common are:

Kinetic energy: 1
2mv2

Energy in a ( uniform) gravitational field: mgh

Gravitational potential energy: Gm1m2/r

Electric potential energy: q1q2/4πε0r

Electric field energy density: ε0E
2/2

Magnetic field energy density: B2/2µ0

Energy density of perfect monatomic gas, where n is number den-
sity: 3nkT/2 = 3P/2

Thermal energy take-up in a substance of specific heat capacity c:
mc∆T

Kinetic energy density of fluid: ρv2/2

Photon energy: hν

Rotational energy: Iω2/2

Energy in a capacitor: Q2/2C = CV 2/2

Energy in an inductance: LI2/2

Further reasons why energy is so useful are that (i) it is a global quantity
referring to an entire system, not just one part (ii) energy is always conserved.
Applying the principle of the conservation of energy is the only way to track
energy as it is transferred from one form to another, or split (e.g. between
bulk motion and thermal internal energy, as in friction).

15 Another toolkit item: physical flux

This is a concept, of considerable utility, that is often treated as ’common
sense’ and hence not given much emphasis in formal discussions of e.g.
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electromagnetism, structure of matter, quantum mechanics and so on. It is
included here as a handy toolkit item.

It is useful to pair consideration of physical flux with the concept of density as
follows:

Density: You already know that a density is a measure of the amount of
something per unit volume. The ’something’ can be: number of particles;
mass of a substance; or energy. Conventionally these different densities
would be represented by the symbols: n, ρ, U (or sometimes u).

Flux: In Physics, a flux is understood to be a measure of the rate at which
’something’ (gas atoms/molecules, photons ...a fluid) passes through unit
area of a surface per unit time. Consider atoms in a monatomic gas passing
through a hole in the wall of its container. How many leave per unit time?
If the hole is of unit area, then the quantity we are seeking is the flux out
of the container. Take a time interval ∆t, and suppose that we know that
the mean value for the component of the atoms’ velocity directed toward and
perpendicular to the plane of the hole is vx. If the number density of atoms is
n, then the number passing through the hole in ∆t is:

nvx∆t

You can think of vx∆t as the furthest distance an atom can be from the hole,
at the start of the timing period, if it is to reach it within time ∆t.

Since the flux φ is the number passing through this unit area per unit time,
the above expression simply has to be divided by ∆t to give:

φ = nvx

To change this flux into a mass or an energy flux, you would just have to
multiply the rhs by m, the mass of each atom, or by the energy E (= 3kT/2)
carried, on average, by each atom.

Hence, notice that a flux is the product of a density and a velocity, fundamen-
tally - if you know any two of the quantities, you know the third.

Vector treatment: What if the flow under consideration is not directed at right
angles with respect to the surface through which it passes? In this more gen-
eral case, the flux would involve the scalar product between the flow velocity
vector and the normal to the surface (e.g. ρv.n̂, where n̂ is the unit vector
normal to the surface).
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Finally, a flux out of a surface will often be linked to the amount of stuff added
to the flow inside the surface. In the case of sunlight, originating from a
conveniently (very nearly) spherical object, it is easy to visualise. If L is the
Sun’s radiant luminosity (total light energy produced per unit time), its flux φ
at a distance D will be that energy rate spread over a sphere of surface area
4πD2: that is, φ = L/4πD2.
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16 Toolkit estimations and problems

Exercise 16.1: In each of the following, an order of magnitude
estimate is required. Estimate

(i) the gravitational energy of a 100kg satellite in low earth orbit, the
velocity of the satellite, and the period of the orbit.

(ii) the kinetic energy of a car travelling at 70mph and the power
output of a car engine.

(iii) the mass of the brakes of a train needed to stop the brake block
temperature reaching melting point when the brakes are applied

(iv) the number of photons emitted per second by a light bulb

(v) the magnitude of the oscillating optical-frequency electric and
magnetic fields in the vicinity of a light bulb.

(vi) the mass of a helium nucleus is about 1 percent less than
the mass of four hydrogen nuclei. Given this and that the Sun’s
hydrogen-burning lifetime is believed to be 10 Gyr, derive an esti-
mate for the Sun’s present-day luminosity.

(vii) estimate the power of the sunlight per unit area when it reaches
the Earth. (Notice this is the same as the flux of sunlight.)

Exercise 16.2:

(i) Estimate the radius of a solar mass (2× 1030 kg) black hole.

(ii) Given that a black hole emits black body radiation at a temper-
ature (in degrees Kelvin) given by h̄c3/(8πMGk), how long would
it take a solar mass black hole to evaporate? If small black holes
were created during the big bang, what mass of black hole would
now be evaporating?

Exercise 16.3: At the end of popular TV programmes, the boiling
of kettles creates a significant surge in the demand for electricity.
Estimate the power output of the national grid.

Exercise 16.4: Using the result from exercise 16.1(vii), estimate
the area of land needed to be covered by solar cells if solar energy
were to generate the nation’s electricity.
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Exercise 16.5: A radio station broadcasts a 105 kW signal at 97.9
MHz. Estimate the following quantities:

(i) the wavelength of the emitted radiation,

(ii) the photon energy of the emitted radiation,

(iii) the number of photons emitted per second,

(iv) the photon flux at a distance of 1.5 km from the radio mast,

(v) the energy density of the emitted radiation at 3 km from the radio
mast,

(vi) the maximum distance at which a signal can be detected by a
portable radio that has a sensitivity of 3 µW.

Exercise 16.6: Estimate the maximum power that could be gener-
ated from the wind if the entire surface area of the UK were covered
with windmills.

Exercise 16.7: Estimate the energy needed to inflate a car tyre.

It is useful to remember that a force applied through a distance is energy:
energy=

∫
Fds. This relationship lies at the base of the approximate equiv-

alence of pressure and energy density. Equivalently, power is a force times
a velocity, and force is an energy potential divided by (or differentiated with
respect to) distance.

Exercise 16.8: Estimate the maximum speed of a car as limited
by wind resistance (the result obtained in exercise 16.1(ii) may be
useful).

17 Drawing Diagrams

Sometimes when faced with a problem, it is very difficult to know where to
start. Often the most difficult part of problem-solving is turning the words of
the question into a picture of what is going on. Sometimes, making yourself
sketch a diagram describing the situation helps you break through. In the
following exercises, begin by drawing a diagram.

Exercise 17.1: Playing snooker, your white ball is on the brown
spot and a red ball is at the mid-point between the two pockets at
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the middle of the table. How should the white ball hit the red ball to
propel it towards one of the pockets at the bottom of the table. You
can assume that a snooker table is twice as long as it is wide. If the
ball is frictionless, by what distance (as a fraction of the ball radius)
should the centre of the white ball be aimed to miss the centre of
the red ball?

Exercise 17.2:

A man standing on the south bank of a still trough of water of width
w, which lies east-west, can run with speed V1 and swim with speed
V2 (< V1). What path should he take to reach a point on the north
bank of the water trough, a distance d to the east, in the shortest
possible time?

Exercise 17.3: A lunar spacecraft sits in a low circular orbit at a
height of 200km above the Moon’s surface. Suppose the spacecraft
is divided into two parts with equal mass and the two parts separate
with a relative velocity, vsplit along the direction of motion (take vsplit

to be smaller in magnitude than the original orbital speed). Sketch
plots of the subsequent trajectories of each part. If one part were
to just graze the surface of the moon, where would it do so relative
to the point of separation? Review, qualitatively, what will happen in
the case of separation perpendicular to the original motion.

Exercise 17.4: In exercise 8.3 you showed that the sound speed
in a gas is cs = constant ×

√
kT/m. Assuming that the constant in

this expression is equal to one, derive approximately the minimum
ceiling height of a church needed to house an organ with a pipe that
sounds four octaves below middle C.

Exercise 17.5: At night, a commuter looks through an umbrella
(ie through the material) at a distant streetlight and sees a regu-
lar pattern of bright and dark fringes around the streetlight. The
distance between the apparent bright fringes is described as be-
ing about 1 mm projected onto the umbrella held at arm’s length.
Quantitatively, is it reasonable to accept that this fringe pattern is a
diffraction pattern?

Exercise 17.6: In a World War II sea battle in the North Atlantic,
two opposing battleships are due north and south of each other
separated by a distance of 10km. With their guns pointed directly
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south and north respectively, they launch shells at each other. The
paths of the shells deviate from a north-south line due to the Earth’s
rotation. In which direction do they deviate, and by how much? Do
the gunners need to take account of this?

Exercise 17.7:

Via spectroscopic observation, astronomers are able to measure
the component of a star’s space velocity projected onto the line of
sight (the so-called radial velocity of the star).

Consider the case of a bright star in a circular orbit within a binary
system, where the second star is a dark object. The bright star’s
orbit speed is 120 km s−1, and the period of orbit is 0.8 days. The
binary system is 48 light years distant, and its centre of mass moves
towards the Earth at a speed that is much smaller than the bright
star’s orbital speed.

(a) In the case that the plane of the bright star’s circular orbit is
viewed edge-on by observers on Earth, sketch and label a graph
to show how the star’s observed radial velocity would vary as a
function of time. (Adopt as your convention that positive velocity
implies motion towards the Earth.)

(b) Now suppose that the invariance of the speed of light claimed
in Einstein’s Special Theory of Relativity is wrong! Instead, imag-
ine that the speed of light obeys Galilean transformations such that
c −→ c + v when emitted by an object travelling at speed v with
respect to the observer. In such circumstances, sketch how the
radial velocity curve for the bright star in (a) would then appear to
an Earth-bound observer, specifying relevant timescales. (Consider
only the star’s apparent line-of-sight motion, and ignore any motion
by the Earth itself).
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18 Idealised models

Consider how you might attempt the following exercise before reading on:

Exercise 18.1:

Use the fact that the temperature of the Earth’s atmosphere is ap-
proximately 300 K to estimate its depth.

This exercise does not have an exact answer since the atmosphere tails off
exponentially into a near-vacuum. Other difficulties of the question are that
the answer depends on the variation with height of a number of parameters,
such as temperature, composition and degree of ionisation. Nevertheless, it
is a meaningful question in the sense that there is some height over which
the density of the atmosphere drops significantly, say by 50 percent, and we
can certainly make an order of magnitude estimation. The way to overcome
the difficulties of the question is to set up an idealised model of the atmo-
sphere and calculate its height. A suitable ideal model might be a simple
visualisation of the atmosphere as a slab of gas with height h. Within the
slab, we assume that the molecular number density (n), temperature (T),
mass (m) of each molecule are constant, and that the gas is not ionised or
dissociated into atoms. In this idealised model, the weight of the atmosphere
above unit area of the Earth is nmgh and the pressure at ground level is nkT .
The pressure supports the atmosphere, so nkT = nmgh, giving h = kT/mg.
Substituting T = 300K, m = 30mp (a mixture of O2 and N2), and g = 10ms−2,
gives a height h of around 100km.

The construction of an idealised model is frequently needed in problem-
solving. This is a skill you will already have used to solve many of the prob-
lems set in previous sections. The aim of this section is just to make you
more conscious of the use of idealised models.

Exercise 18.2:

Consider an isolated system of mass M taking up a volume V , with
the particles making up the mass interacting only through gravity.
(This shall be turned into a naive model of the Sun.)

(a) Using dimensional analysis, construct the timescale for the evo-
lution of this system. That is, how can we combine G, the universal
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gravitation constant, with M and V to make a quantity with the units
of time?

(b) Make a rough numerical estimate of the timescale of gravita-
tional evolution of the Sun in the absence of other forces.

(c) This can be looked at another way - suppose the internal pres-
sure gradient supporting the Sun against gravity was suddenly re-
moved. Describe what would then happen and use simple physical
arguments to derive an approximate expression for the timescale
associated with the change.

Exercise 18.3:

Some geologists predict that a large part of the island of La Palma
(one of the Canary Islands, area approx. 750 km2) will break off
during the next volcanic eruption on the island and trigger a huge
tsunami.

(a) When the water depths are not too shallow, most of the energy
that is stored in a tsunami is gravitational potential energy due to
the displacement of the water masses. It has been argued that e,
the energy per unit length of the wave crest, is given by

e = αρ(hd)3/2

where α is a dimensionless constant of the order of 0.1, ρ is the
mass density of water, h is the wave height and d is the water depth.
Check whether this equation is dimensionally plausible, and, if not,
suggest a modification.

(b) Approximate the consequences of the massive eruption by as-
suming the whole of La Palma slumps 100 m into the Atlantic. De-
rive an expressions that shows how e would change with distance
as the resulting tsunami wave spreads away from the island? Es-
timate a typical tsunami wave height in (i) the mid-Atlantic, and (ii)
close to the US east coast, 5000 km away. (For simplicity, you can
assume that the bulk of the energy is indeed potential energy and
is stored in just a single wavefront. You can also assume that the
wave travels in water deep enough so that it does not lose energy
via its interaction with the sea floor).
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Exercise 18.4: (i) A star similar to the sun is observed to explode.
Estimate the critical explosion velocity that must be exceeded for
the star to continue expanding and avoid recollapse due to gravity.

(ii) Estimate the critical density of the present-day visible universe
required to make the universe collapse and stop it expanding for
ever.

(iii) Given that galaxies contain typically 1011 stars, and that the typ-
ical distance between galaxies is 1 Mparsec, investigate whether
there is sufficient visible matter in the universe to make it open (ex-
pand forever) or closed (recollapse).

(iv) Consider two galaxies separated by a large distance. How must
this distance vary with time if the universe is to be forever on the
boundary between being closed and open.

The doubt about idealised models is whether they really are equivalent to the
reality they represent. In the above exercise, the neglect of General Relativity
(GR) places a big question-mark over the simple treatment, but as it happens
it does give reasonable answers.

Idealised models are essential starting points in research. Faced with a phe-
nomenon you do not understand, it is useful to try out idealised hypothetical
models first and see whether the answer begins to fit the data. A simple
model achieving a good fit is always going to be worth more, in the long run,
than a more sophisticated one (usually demanding more inputs) that does not
do significantly better. Simplicity is not to be despised! Exactly this simplicity
or ’parsimony’ is enshrined in the concept of Occam’s Razor. Ultimately, we
rule in favour of GR over the simple explosive model for the Universe using
Occam’s Razor, because GR works across so many more problems.
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