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9 Arithmetic without a calculator - the skill of estimation

All exercises in this hand-out should be attempted without a calculator.
There are advantages in being able to do sums without a calculator:

• You can work out a rough answer whenever an idea comes into your
head

• You keep a sense of the magnitude of numbers and effects and thereby
better connect the maths with the physics

• It gives you a way of checking an answer arrived at with a calculator

Exercise 9.1: What is the energy (in Joules) of a very high energy
cosmic ray proton arriving at earth with a Lorentz factor of 3× 1011?
Making your own estimate of the mass and velocity of a tennis ball,
compare this with the energy of a tennis ball served by a top player.

The answer to the first part of exercise 9.1 could be calculated with pen
and paper by exactly multiplying the Lorentz factor of γ = 3 × 1011 by the
proton mass mp = 1.67× 10−27kg by the speed of light (c = 3× 108) squared.
Alternatively, you could recognise that (i) 1.67 ≈ 5/3, so γmp ≈ 5 × 10−16,
and (ii) 3 ≈

√
10, so c2 ≈ 1017. Putting these together gives γmpc

2 ≈ 50 J.
A similar estimate of the energy of a tennis ball gives a value that is not too
different. The art of making estimates without using a calculator is to accept
errors of the order of 20%, for example, in saying that c2 = (3× 108)2 ≈ 1017.

Useful tricks are

• π ≈ 3, and π2 ≈ 10 to a few % accuracy

• Expressing numbers such as 1.67 as a fraction, 5/3

• Remembering the powers of 2, and also useful proxies for them (such
as 26 ≈ 200/3 and 210 ≈ 1000)

• Remembering some useful square roots, including
√

2 ≈ 1.4 and
√

3 ≈
1.7 ≈ 5/3, and cube roots such as 101/3 ≈ 2

• Remembering that e=exp(1)'2.7, ln(10) ' 2.3 (or log10e' 0.43). These
are helpful when faced with exponentials raised to extreme powers.
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As with the tricks of dimensional analysis, it helps to look for useful combi-
nations of numbers. This helped in exercise 9.1 in which it helped to group
γ and mp together. In similar vein, it is a good habit to group all the powers
of 10 together and calculate them separately from the other numbers. Nu-
merical estimation that gets it right is a crucial skill to develop: you need to
establish your own preferred simplification tricks, and practise them!

Worked example

As an example, the energy of the nth energy level in the hydrogen
atom is

En =
mee

4

8ε2
0h

2n2 =
9× 10−31 × (1.6× 10−19)4

8× (8.8× 10−12)2 × (6.6× 10−34)2 × n2 J

The calculation can proceed in the following steps:

1) 1.6× 10−19 = 24 × 10−20, giving (1.6× 10−19)4 = 216 × 10−80 =
210 × 26 × 10−80 = 1000× 200/3× 10−80 = 2/3× 10−75.

2) Since 8.8 is close to 9 and 92 ≈ 80, (8.8× 10−12)2 ≈ 8× 10−23.

3) Since 6.6 ≈ 20/3, (6.6× 10−34)2 ≈ (4/9)× 10−66.

Collecting the powers of 10 together gives

En ≈
9× (2/3)

8× 8× (4/9)
× 10−19

n2 ≈ 540

256
× 10−18

n2 ≈ (
512

256
+

28

256
)× 10−18

n2

≈ 2.1× 10−18n−2 J

The exact result is 2.2 × 10−18n−2J, so the approximate calculation
is really quite accurate.

There are many ways this calculation might be performed. If less accuracy
is required, there are short-cuts that could make the calculation even easier,
as the following example shows:

Re-worked example

As above,

En =
mee

4

8ε2
0h

2n2 =
9× 10−31 × (1.6× 10−19)4

8× (8.8× 10−12)2 × (6.6× 10−34)2 × n2 J
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If less accuracy is required, the calculation can proceed in the fol-
lowing steps:

1) (1.6× 10−19)4 = (1.6)4 × 10−76 ≈ (
√

3)4 × 10−76 ≈ 10−75,

2) 9× 10−31 ≈ 10−30 and 8 ≈ 10

3) (8.8× 10−12)2 ≈ (10−11)2 ≈ 10−22.

4) (6.6× 10−34)2 ≈ (4/9)× 10−66 ≈ 4× 10−67.

Putting these together gives

En ≈
10−30 × 10−75

10× 10−22 × 4× 10−66n2 ≈ 2.5× 10−18n−2 J

The less accurate calculation still does surprisingly well, and for many pur-
poses the accuracy is quite sufficient.

Exercise 9.2: Without a calculator, evaluate the following:

(i) The Bohr radius

a0 =
ε0h

2

πmee2

(ii) The Thomson scattering cross-section

σ =
8π

3
(

e2

4πε0mec2 )
2

(iii) The astronomical unit of length, the parsec. This is defined as
the distance from the solar system that an object has to be in order
that its parallax (half its maximum angular displacement against a
background of ’fixed’ very distant objects seen during the course of
a year) is one second of arc.

(iv) The Boltzmann ratio at (a) T = 100000 K and (b) room tempera-
ture, giving the fraction of H atoms excited to the n = 2 level relative
to those still in the ground state (n = 1):

N2

N1
= 4 exp(

−χ1,2

kT
)

Here χ1,2 is the energy needed to excite an H atom from its ground
state to the n = 2 level. It is 10 eV.
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Exercise 9.3:

Here are two numerical problems that also fold in the application of
some simple physical thinking:

(i) Estimate the mass of the Sun given that the distance of the Earth
from the Sun is 1.5 × 1011m and the Earth takes one year to com-
plete an orbit of the Sun. (Hint: as this is an estimate, you are fully
justified in using a simplified physical model that you are already
well used to.)

(ii) A typical maximum momentum pmax for the free electrons in a
metal where

pmax = (
3ne,vh

3

8π
)
1/3

(In estimating ne,v, the number density of free electrons, assume
there is one such electron associated with every atom in the metal,
and either look up or guestimate how dense typical metals are com-
pared with water – for which you should know the density.)

From here on, you can expect to have to start applying your core knowledge
of physics. Just what that core might be will be discussed and pulled together
in connection with hand-out C. Before we do that – some even rougher esti-
mations.
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10 ‘Order of magnitude’ calculations

A factor of 10 is considered to be an order of magnitude, so an ‘order of
magnitude’ calculation is one in which the answer is calculated to the correct
power of 10. If the answer is in the form a number times 10n, then the value
of n is correctly calculated. The concept of an order of magnitude calculation
is imprecise, but it usually means that the answer is correct to within maybe
a factor of 3 (=

√
10). But it may not be this good. When working at this

level of approximation, be ”bloody, bold, and resolute” about having to guess
values for some of the quantities involved – have faith that over-estimation
of one component quantity and under-estimation of another can end up in
compensation... The shame is in not trying, rather than in getting it ’wrong’
(whatever that means).

To build confidence for this style of estimation, it helps to start compiling your
own list of ’useful numbers’ to commit to memory that enables you to set
scales to a wide variety of physical phenomena. For example any physicist
deserving the name should not have to think what the mass density of water
is, or what would be a typical atomic radius, the wavelength of visible light,
etc. In the following you will have to draw on everyday experience, beyond
the narrowly academic.

Exercise 10.1: From your rough ideas or knowledge of the density
and radius of the earth, estimate its mass to an order of magnitude.

Exercise 10.2: Estimate the mass of water in all the World’s oceans.

Exercise 10.3: Estimate the impulse due to a raindrop hitting the
ground.

Exercise 10.4: Estimate the temperature at which the Earth would
immediately lose most of its atmosphere.

Exercise 10.5: Estimate the number of midwives needed in the
Greater London area? AND/OR.. How many piano tuners can be
fully-employed in the Greater London area?

Exercise 10.6: A hiker is walking along the cliff path near Lyme
Regis when he comes across a trackway of dinosaur footprints. As
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he examines them, he becomes thirsty and takes a mouthful out of
his water bottle. How many water molecules in the drink he took
are likely to have come from the dinosaur who made the footprint?

Exercise 10.7: How many kilograms of helium are produced every
second in the Sun?

Exercise 10.8: A proton has a size a of 1 fm, and the size of a
nucleus scales as a × A1/3, where A is the number of nucleons
(protons and neutrons) making up the nucleus. Assuming that it
takes a direct collision with a nucleus to stop a proton, derive an
order-of-magnitude estimate for the range of a proton in lead.

11 Identifying whether a physical effect is important – the
‘back of the envelope’

When you approach an unfamiliar problem, the first step is to identify the
important physics. Suppose you were a physicist in the early 20th century
before the discovery (or invention?) of Quantum Mechanics. You know of the
electron and the proton and their masses. You want to develop a theory of
the atom.

As a first step you could prove that the atom cannot be held together by
gravity. To do this you need to formulate the question in a quantitative way,
showing either that some quantity is very large or very small compared with
another quantity. You could show that the gravitational force between an
electron and a proton at some spatial separation (which you must estimate)
is small, but it has to be small compared with another relevant force. Alter-
natively, you could show that the gravitational potential energy at the same
separation is small compared to another relevant energy. The potential en-
ergy could be shown to be small compared with the thermal energy (kT ),
which is the minimum energy the electron could be expected to have.

The energy argument looks most promising – especially as it persuasively
contrasts a negative binding energy with a positive kinetic energy. The char-
acteristic size R of an atom can be estimated from the mass mp of a proton
and the density ρ of a solid:R ∼ (mp/ρ)1/3. The gravitational potential εG

of an electron a distance R from the proton is εG ∼ Gmpme/R. Atoms are
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stable at room temperature, so gravity can only hold an atom together if εG

is comparable with or larger than the thermal energy kT , which is therefore
an estimate of the kinetic energy, at room temperature. Put the numbers in
to show that this condition is not satisfied. You will not need a calculator to
prove this.

You could now go on and show that electrostatic attraction can do the job in a
way gravity cannot – provided, of course, that the physics of your time allows
you to know the magnitude of the charge on a single electron or proton.

The exercises below are further comparisons of relative magnitude of effect.
The calculations involved need be nothing more than crude ‘order of mag-
nitude’ estimates given that that the aim is demonstrate or rule out large
differences. Estimation of this type is what is often referred to as ‘back of
the envelope’. The idea behind this figure of speech is that, when you have
that prize-winning stroke of scientific inspiration sitting on a train or in a cafe,
you reach for the only piece of paper to hand (an envelope...?) to estimate
whether your inspiration even begins to work on the right physical scale.

Exercise 11.1: Demonstrate the truth, or untruth, of the following
statements. These require you, first, to identify the relevant physics,
before making numerical estimates.

(i) Switching on car lights does not noticeably affect a car’s perfor-
mance.

(ii) Energy released by industrial activity cannot be directly respon-
sible for global warming.

(iii) The sun cannot be powered by chemical reactions.
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