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Introduction

The importance of problem-solving

An ability to solve problems of all kinds is one of the most valuable skills
learnt by physics students. This includes not only problems directly related
to physics, but any problem without a clear starting point or way in. Physics
students should excel at problems requiring a numerical approach, but even
physics problems require a wider range of skills such as visualisation in three
dimensions and learning to pick out the important factors whilst ignoring the
less important. This series of seminars aims to

• Introduce you to some of the building blocks of problem solving in physics

• Acquaint you with the value of approximate and order-of-magnitude tech-
niques

• Develop your ability to tackle unfamiliar, unstructured problems

Be warned, you will not necessarily be provided with all the information
needed to solve all the problems included in this booklet – we want you to
begin to pick up the strategies (e.g. creative guesswork, reality-checking,
research) that will move you on from spoon-fed problem-solving.

The expectation is that you will work through parts of this booklet, and others
supplied later on, under the supervision of and at a pace set by your seminar
leader. The priority for you should be to use the seminars, working both on
your own and co-operatively, to practise problem-solving and gain in under-
standing and confidence. At intervals, you will move on to a new handout
and section of work. Exercises left undone and unread material are there to
be attended to in your own time. On a best efforts basis, seminar leaders will
respond to queries arising from private study brought back to seminars.

There will be no distribution of photocopied ‘model answers’. From time to
time, solutions will be presented on the whiteboard at the discretion of your
seminar leader, and bottom-line answers to individual questions will usually
be available. You, or a representative of the small group you are working in
at the time, may be asked to present solutions at the seminar room board.
Please be aware that many problems can be tackled in more than one way.
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This series of seminars is intended to promote generic skills that will help you
become the kind of flexible problem-solver that does well in the two 3-hour
Physics comprehensive papers. These are sat in year 3 by most students –
those who spend a year in Europe take them in year 4.

A rough break down of the 8.5 seminars up to the end of term is:

• Dimensional analysis – 3 weeks (hand-out A – this one)

• Numerical estimation and approximate methods – 3 weeks (hand-out B)

• Useful tools (especially energy), drawing diagrams and idealised models
– 3 weeks (hand-out C)

• Longer problems, including a past test paper (hand-out D)

Problem-solving test

The time and place for this will be:

Friday, May 2nd 10.00 – 11.30
Blackett lecture theatres (as for preceding exams)

The test paper will be made up of a compulsory section based on core
mastery-level material, followed by a section giving you the choice of one
out of three questions. No calculators are to be used. You will be supplied
with a list of the common physical constants and other frequently needed
quantities. 50 percent of the marks go to each section.

Well laid out, properly-reasoned solutions will earn you full marks: just getting
the right answers will earn marks, but certainly not full marks. In marking the
test answer books, we will want to be able to follow your working out, so we
can be sure you know what you are doing.
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A) Dimensional Analysis

1 Dimensions

When you find a numerical answer to a problem, you will be aware that you
should always give the units. For example, if the answer is a velocity, you
give the answer in terms of metres per second. You might also give the
answer in terms of cm s−1, feet s−1 or miles hour−1. Whatever system of
units you choose, the unit for velocity is always a length divided by a time.
Accordingly, the dimensions of velocity are length divided by time. One way
of writing this is: [velocity]=LT−1 where L stands for length and T for time.
Similarly, [acceleration]=LT−2 and, since energy can be written as a mass
times a velocity squared, [energy]=ML2T−2, where M stands for mass.

A general method for finding the dimensions of a quantity is to write down
an equation that includes it, in which all other quantities present have known
dimensions. For example, the dimensions of energy (ε) can be found from
the equation ε = 1

2mv
2 or equivalently from the equation ε = mc2.

Exercise 1.1: Use the following equations to find the dimensions
of force (F), momentum (p), number density (n), mass density (ρ),
pressure (P) and energy density (U):

F = ma p = mv n =
N

(4/3)πR3

ρ = nm P = F/A U =
1

2
nmv2

where a is acceleration, N is a number (dimensionless), and A is
an area.

Some quantities are dimensionless – for example N above, which happens
to be the total number of particles in the specified volume.

A further common dimensionless quantity is angle. Although we give angles
units of degrees or radians, these are in fact dimensionless. This is clear from
the way we express an angle in radians as the length of an arc over a radius,
ie an angle is a length divided by a length, and therefore dimensionless.
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Exercise 1.2: Use the following equations to find the dimensions
of angular velocity (ω), angular momentum (L), a couple (τ ), and
moment of inertia (I):

ω = θ/t L = mrv τ = Fr L = Iω (or I = L/ω)

where θ is angle, t is time, r is radius, v is velocity and F is a force.

Exercise 1.3: (i) Use the equation ε = hν, where ν is the frequency
of radiation, to show that Planck’s constant h has dimensions of
angular momentum. (ii) Find the dimensions of the gravitational
constant G.

2 Dimensions in differential and integral equations

A differential dY/dX is the limit of the division of a small change in Y (∆Y )
by a small change (∆X) in X. dY/dX therefore has the same dimensions as
Y/X.

Exercise 2.1: Using the results and definitions in section 1, find
the dimensions of dv/dt, dε/dx and

√
dP/dρ, and show that they

have the same dimensions as acceleration, force and velocity re-
spectively.

A similar principle applies to integrals. An integral
∫
f(x)dx can be under-

stood as the area under a curve. f(x) gives the vertical height and dx is the
increment in the horizontal dimension. Hence the dimension of the integral is
the dimension of f times the dimension of x. For example, the work W done
by a force F pushing through a distance x is W =

∫
Fdx and [W ] = [F ][x].

Exercise 2.2: Using the results and definitions in section 1, find
the dimensions of

∫
ρdV ,

∫
τdθ and

∫
UdV , where

∫
dV represents

an integration over a volume. You should find that the dimensions
of the integrals are mass, energy and energy respectively.

Since a second-order differential such as d2Y/dX2 = d(dY/dX)/dX, its di-
mensions are [Y ][X]−2. A familiar case is acceleration that is a second differ-
ential of length wrt time and so has dimension [L][T ]−2.
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3 Dimensions and temperature

This is a first example in which the concept of energy helps us to bring into a
dimensional system some of the more abstract physical quantities that have
no immediately obvious expression in terms of mass, length or time.

Temperature is a measure of average energy. The way in which you probably
have seen this connection made is through the product 1

2fkT which is the
mean energy of a gas molecule in an ensemble of molecules at temperature
T . The multiplying factor k is the Boltzmann constant, an example of what
is known as a physical constant – as opposed to a dimensionless numerical
constant like f , here representing the number of degrees of freedom each
molecule has. Since kT is required to have the dimensions of energy, k
must be an energy divided by a temperature. More explicitly, since [kT ] =
ML2T−2), and the dimension of T is, shall we say, K for Kelvin, its SI unit of
measurement ([T ] = K), the dimensions of Boltzmann’s constant must be
[k] = ML2T−2K−1.

Exercise 3.1: Show that nkT has the same dimensions as both
pressure and energy density. Here, n represents the particle num-
ber density.

4 Dimensions and electrostatics

In electrostatics we have to introduce two new quantities:
(i) charge with dimension Q and units of Coulombs (SI), and
(ii) electric potential measured in units of Volts (SI).
Again, we can make sense of them dimensionally through the concept of
electrical energy: we know that a charge q in an electric potential V has an
energy qV . Hence [charge]× [potential] = ML2T−2, or, if we want to separate
out the dimension of electric potential, we can write [V ] = ML2T−2Q−1.

Exercise 4.1: The equation of motion for an electron, carrying
charge e, in an electric field E is mdv/dt = eE. From this equa-
tion show that [E] = MLT−2Q−1. Alternatively, from the equation
E = −dV/dx show that [E] = [V ]L−1. Confirm that these two ex-
pressions for [E] imply the same expression for [V ] as given in the
sentence immediately preceding this exercise.
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Exercise 4.2: In SI units, the energy density of an electric field
is 1

2ε0E
2. The dimensions of energy density (U ) were calculated in

exercise 1.1, and the dimensions of E were calculated in exercise
4.1: Hence show that dimensions of ε0 are [ε0] = M−1L−3T2Q2.

Exercise 4.3: In SI units, the force between two electrons sepa-
rated by a distance r is F = (1/4πε0)(e

2/r2). Confirm that this gives
the same dimensions for ε0 as obtained in exercise 4.2.

5 Some useful tricks

Temperature (usually measured in Kelvin) always occurs in equations either
in conjunction with Boltzmann’s constant k or Stefan-Boltzmann’s constant,
σ. Examples of this are the equation for pressure, P = nkT , the equation
for energy density U = 3

2nkT and the equation for energy flux F = σT 4. T
mostly appears as kT to make an energy, and can only appear apart from k
or σ when it appears as a ratio against another temperature.

The same applies to electrostatic quantities. Charge (q), potential (V ) and
ε0 can only appear in certain combinations. qV is an allowed combination
because it makes an energy. q2/ε0 is allowed because it occurs in the elec-
trostatic force equation F ∝ e2/(r2ε0) . ε0E2 is an energy density, while the
electric field E is a potential V divided by a distance. Consequently ε0V 2 is
an allowed combination.

These special combinations can be used to simplify a dimensional analysis.
For example, a well known distance scale in plasma physics is the Debye
length, λD = (ε0kT/ne

2)
1
2 . The easy way to show that this expression really

does have the units of length is to group terms:

λD =

(
ε0kT

ne2

) 1
2

=

kT ×
r2ε0
e2

× (
1

r2

)
×
(

1

n

) 1
2

where we have introduced an extra r2 in two places. The reason for doing
this is that e2/(r2ε0) is a force (mathematically this is allowed because the two
appearances of r2 cancel, and we do not even have to say what distance r
actually is). We can now use the simplifications
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[kT ] = [energy] = [force]× [distance] [
r2ε0
e2 ] = [force]−1

[
1

r2 ] = [distance]−2 [
1

n
] = [distance]3

to show that λD does indeed have the dimensions of distance.

Exercise 5.1:

ND =
4π(ε0kT )

3
2

3n
1
2e3

Show that ND is dimensionless.

Exercise 5.2: According to Bohr’s theory, the ionisation energy of
hydrogen is

εi =
mee

4

8ε20h
2

Show that εi has dimensions of energy.

6 Dimensions and magnetic field

Magnetic field is in many ways analogous to electric field and must always
appear in certain combinations. As with electric field, dimensional analysis is
best conducted by grouping magnetic field in combinations with recognisable
dimensions. Useful equations for dimensional analysis including magnetic
field and related quantities are, in SI,

• The force F on an electron moving at velocity v across a magnetic field
B is F = evB.

• The energy density of a magnetic field is U = B2/2µ0

• An electron, with mass me, executes a circular motion in a magnetic field
with a period tB = 2πme/eB.

• [E]/[B] = [velocity] (see exercise 6.2 below)
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If these combinations are used, there is no need to worry about the actual
dimensions of B, although the first and last of the above equations show that
[B] = MT−1Q−1.

Exercise 6.1: Show that va = B/
√
ρµ0 has dimensions of velocity.

Exercise 6.2: For an electromagnetic wave propagating in the x di-
rection, the electric field (in the y direction) and magnetic field (in the
z direction) are related by the partial equation ∂E/∂x = −∂B/∂t.
Show that E/B has dimensions of velocity.

Exercise 6.3: Show that 1/
√
µ0ε0 has dimensions of velocity.
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Uses of Dimensional Analysis

7 Using dimensions to check equations

Mistakes are easily made when manipulating mathematical equations. Di-
mensional analysis provides an easy way of checking for errors. To concoct
a rather contrived case, imagine a gas confined within a vertical tube by a
freely-moving piston.

gas

piston

The total energy εtotal in the system can be written as

εtotal = εke + εgrav + εthermal + εmotion

where εke is the kinetic energy of the moving piston, εgrav is the gravitational
energy of the piston which changes as the piston moves vertically, εthermal is
the thermal energy of the gas in the cylinder which changes as the piston
compresses it, and εmotion is the bulk kinetic energy of the moving gas. One
might actually find other contributions to the total energy of the system such
as frictional heating. The energy equation only makes sense if every term
in the equation has dimensions of energy. This can be checked by a dimen-
sional analysis of each term. If an error is made in deriving the equation, this
may well show itself as an error in the dimensions in the incorrect term. This
applies not only to energy equations, but to all equations in physics, and this
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leads to the following rule:

RULE: All terms added together in an equation must have the same dimen-
sions

Although dimensional analysis will not reveal errors due to missing numerical
factors such as 4π/3, it will reveal many errors in algebraic manipulation.
Hence, if you are engaged in some difficult maths, it pays to perform an
occasional dimensional analysis to check you are staying on track.

Another useful check from time to time, is to remember that arguments of cer-
tain functions are of necessity dimensionless. An obvious example of this is
provided by the trigonometric functions (sine, cosine...) that demand angles
as arguments – it was noted in section 2 that angles are without dimension
since they are formed from the ratio of two lengths. Important further in-
stances of functions requiring dimensionless arguments are the exponential
and logarithmic functions: many physical processes involve exponential de-
cay or growth which leads to their frequent appearance. Since the arguments
of exponential or log functions can themselves be quite complicated expres-
sions, it can help to check that they are dimensionless as required: if they are
not, you will know you have gone wrong somewhere and have to reconsider.

Exercise 7.1: Ascertain whether the following equations are di-
mensionally plausible:

(i) v2 = GM/r2

(ii) kT = eE

(iii) ε0E = B/µ0

(iv) e2/4πε0 = GM 2

Exercise 7.2: Examine the following equations for dimensional
plausibility:

(i) The time-dependent Schrodinger equation

− h̄2

2m

∂2ψ

∂x2 + U(x)ψ = ih̄
∂ψ

∂t

where ψ(x, t) is the wavefunction, which varies in space and time,
and U(x) is the potential energy of a particle at position x.
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(ii) The Maxwell equation for electric field E in the y direction with a
magnetic field B in the z direction

−∂B
∂x

= µ0j + µ0ε0
∂E

∂t

where j is the current density (current divided by cross-sectional
area) in the y direction. You can use results derived in section 6.

8 Using dimensions to derive equations

A sphere of radius R moving through a gas with density ρ at velocity v is sub-
ject to a decelerating force F . Dimensional analysis of these four quantities
gives [R]=L, [ρ]=ML−3, [v]=LT−1 and [F ]=MLT−2. Common sense tells us that
F depends on some combination of R, ρ & v. The only possible dimension-
ally correct dependence of F on these quantities is F = constant × ραvβRγ

where α, β & γ are chosen to make the equation dimensionally correct. The
left hand side of the equation has dimensions [F ]=MLT−2, And the right hand
side has dimensions [ρ]α[v]β[R]γ = (ML−3)α(LT−1)βRγ = MαL−3α+β+γT−β.

For dimensional validity, the left and side and the right hand side must have
the same dimensions, giving

MLT−2 = MαL−3α+β+γT−β

Considering the powers of M, L and T separately, we can extract three simple
simultaneous equations:

α = 1

−3α+ β + γ = 1

β = 2

From these, we have α = 1, β = 2 and γ = 2, giving:

F = constant× ρv2R2
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Dimensional analysis cannot tell us the value of the numerical constant, but
there is no other way of combining these quantities in a dimensionally correct
expression, So this must be the equation for the force on the sphere. The
equation tells us that if the gas density is doubled the force is doubled, and if
either the velocity or the radius is doubled the force is increased by a factor
of four.

Exercise 8.1: A supernova explosion launches a shock wave mov-
ing at velocity v into the interstellar gas with density ρ. The gas
pressure immediately behind the shock is P . Show by dimensional
analysis that P=constant ×ρv2.

Exercise 8.2: A pendulum consists of a mass m swinging on the
end of a massless string of length l. Given that the frequency ω of
a small-amplitude oscillation is independent of its amplitude, show
that

ω = constant×
√
g

l

How does the period of oscillation change if the length of the string
is doubled?

Exercise 8.3: Given that the velocity of sound in a gas (consisting
of only one kind of molecule) may depend only on the temperature,
the mass of the molecules, and the number density of molecules,
work out what the dependence of the sound velocity on these quan-
tities should be. Note: recall the earlier discussion of how tem-
perature in Kelvin can occur only in combination with Boltzmann’s
constant.

Exercise 8.4: Use the result of exercise 8.3 to explain why inhaling
helium raises the pitch of the voice.

Dimensional analysis only works for exercise 8.2 if the string is massless,
otherwise there are two masses, that of the mass m and that of the string,
and there are other ways of combining quantities into a dimensionally correct
equation. Similarly in exercise 8.3, dimensional analysis fails if the gas is
constituted of molecules with a range of masses.
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To finish, a longer, more challenging piece of analysis.

Exercise 8.5: The flux of radiation (energy passing through unit
area in unit time) from a blackbody (a source in thermal equilibrium)
at temperature T is σT 4, where σ is the Stefan-Boltzmann constant:
its value is 5.7 × 10−8 W m−2 K−4. It is also possible to write σ in
terms of the better-known physical constants k, h and c as:-

σ = µkαhβcγ

where µ, α, β and γ are numerical constants. What are the values
of α, β and γ? Show by rough calculation that µ is ∼40.
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