Relativity – Lecture 7

Energy and momentum – applications II

Lecture 7: E & p: Applications II

7.1 The photon

- The photon is the quantum of light:
- Travels at the speed of light
- Rest mass of photon is zero ... it has no rest frame
- where h is Planck's constant Energy of photon of frequency f is $oldsymbol{E}_{\gamma}=hf$
- Photon momentum:
- Invariant-mass formula applied to photon:

$$(m_0c^2)^2 = E_{\gamma}^2 - (cp_{\gamma})^2 = (hf)^2 - (cp_{\gamma})^2 = 0$$

- Rearrange to give: $p_{\gamma} = \frac{hf}{c} = \frac{h}{\lambda}$ (wavelength = λ)
- Red-shift formula using energy-momentum Lorentz transformation:
- In S' photon frequency f' (parallel to -ve x' axis)
- In Sphoton frequency f (parallel to -ve x axis)

$$E_{\gamma} = \gamma (E'_{\gamma} + \beta (-cp'_{\gamma}))$$

$$hf = \gamma (hf' - \beta c \frac{hf'}{c})$$

$$f = f' \sqrt{\frac{1-\beta}{1+\beta}}$$

Lecture 7: E & p: Applications II

7.2 Energy/momentum conservation

- Total (relativistic) energy of system of particles conserved
- particles conserved Total (relativistic) momentum of system of
- Consequence:
- Can turn rest-mass energy into kinetic energy
- Can turn kinetic energy into rest-mass energy (i.e can turn energy of motion into matter)

7.3 Natural units

- Speed of light 'natural' unit of speed
- Set c = 1
- through potential of 1 V → 'natural' unit of energy **Energy gained by electron accelerated**
- i.e. 1 eV = energy gained by electron accelerated through potential of 1 V
- $-1eV = 1.6 \times 10^{-19} J$
- Natural unit of mass: eV/c²
- Natural unit of momentum: eV/c

Lecture 7: E & p: Applications II

Lecture 7: Ш Qo p: Applications II

Lecture 7: **™** p: Applications II

7.5 Nuclear fission

Silwood Park: Imperial College Reactor Ctr

Small reactor used for research (e.g. effect of radiation on materials)

Lecture 7: E & p: Applications II

7.6 Decay of the K⁰ meson

- Rest mass of $K^0 = 500 \text{ MeV/c}^2$
- Decay: K⁰ → π⁺ + π⁻
- Consider:
- K⁰ to be at rest in S'

Use energy/momentum conservation to show: $E'_{\pi} = 250 \text{ MeV}$

Using 'natural' units!

- Momentum conservation implies: $p_{y_{\pi+}} = p_{y_{\pi}} = p_{y_{\pi}} = p_{y_{\pi}}$
- Calculate pion momentum: $p'_{\gamma_{\pi}} = \sqrt{E'_{\pi}^2 m_{\pi}^2} = 207 \,\text{MeV/c}$

- Now consider K⁰ to be moving so that its energy is 2000 MeV
- Take K^0 rest frame (S') to be moving relative to S (usual configuration)
- Calculate γ and β : $E_K = \gamma m_K = 2000 = \gamma \times 500$

Using 'natural' units!

$$\Rightarrow \beta = \sqrt{\frac{\gamma^2 - 1}{\gamma^2}} = \frac{\sqrt{15}}{4}$$

Lorentz transformation now gives E_{π} and $\rho_{x\pi}$: $E_{\pi} = \gamma [E'_{\pi} + \beta \rho'_{x\pi}] = 4 \times 250 = 1000 \text{ MeV}$

$$p_{x_{\pi}} = \gamma \left[p'_{x_{\pi}} + \beta E'_{\pi} \right] = 4 \times \frac{\sqrt{15}}{4} \times 250 = 968 \text{ MeV}/c$$

Lecture 7: E & p: Applications II

- Coordinates transverse to the relative motion do not transform:
- $p_{y_{\pi}} = p'_{y_{\pi}}$

$$\rho_{z_{\pi}} = \rho_{z_{\pi}}'$$

Check invariant mass evaluated in S:

$$[m_K]^2 = (E_{Tot})^2 - (\rho_{xTot})^2 - (\rho_{yTot})^2 - (\rho_{zTot})^2$$

$$= (2000)^2 - (250\sqrt{15})^2 - 0 - 0$$

$$= 4 \times 10^6 - 3.75 \times 10^6 = 25 \times 10^4$$

$$= [500]^2$$