Relativity – Lecture 6

Energy and momentum

Lecture 6: Energy and moment^m

<u>6.1 Space-time diagram</u>

- Usual definition of S and S':
- 'Standard' diagram shows space coordinates

- Space-time diagram:
- Attempt to show position and time coordinates of events

Lecture 6: Energy and moment^m

- Pictorial c representation of space-time position of event in S and S':
- Mathematical connection in Lorentz transformation equations

×↓

- Pictorial crepresentation of velocity transformation
- Mathematical connection in velocity transformation equations

S

Lecture 6: Energy and moment^m

6.2 Non-relativistic kinetic energy and momtm

Non-relativistic formula

Momentum Kinetic energy

$$\underline{p} = m\underline{v}$$
 $K = \frac{1}{2}mv^2 = \frac{p^2}{2m}$

- Maximum speed c implies maximum nonrelativistic momentum and kinetic energy
- Routinely falsified at accelerator research Novosibirsk, ... J aboratories [CERN, DESY, FNAL, SLAC, KEK,

6.3 The rest frame

- Proper time:
- Time interval between two events that occur at same position - in 'rest frame'
- Proper length:
- Length of object in frame in which object is at rest - 'rest frame'
- Rest mass:
- Mass of object in frame in which object is at rest - 'rest frame'
- Define: $m_0 = \text{rest mass}$

Lecture 6: Energy and moment^m

6.4 Lesson from correspondence principle

- Correspondence principle:
- Object with small velocity (v << c) must satisfy

$$p=m_0v$$

- Relativistic definition of momentum must reduce to this when v << c
- So, seek definition of momentum that satisfies:

$$p \propto m_0$$
 and $p \propto v$

<u>6.5 Lesson from the space time diagram</u>

Consider object at rest in S': rest mass m₀

Lecture 6: Energy and moment^m

Invariant interval:

$$[c\Delta t']^2 = [c\Delta t]^2 - [\Delta x]^2$$

- Manipulate this equation as follows:
- Multiply both sides by $\left[m_0c^2
 ight]^2$
- Divide both sides by $[c\Delta t']^2$
- Apply time-dilation formula $c\Delta t = \gamma c\Delta t'$
- Rearrange to give:

$$\left[m_0c^2\right]^2 = \left[\gamma m_0c^2\right]^2 - \left[\gamma \beta m_0c^2\right]^2 - \left[6.1\right]$$

6.6 Relativistic definition of momentum

- Analogy with space and time:
- Space-time: time

position

energy

'3 vector'

Mmtm-energy:

mmtm Q

'3 vector

Analogue of invariant interval:

$$[m_0c^2]^2 = E^2 - (cp)^2$$

6.2

by comparison of 6.1 with 6.2 **Definition of momentum:**

$$cp = \gamma \beta m_0 c^2$$

Lecture 6: Energy and moment^m

- 6.7 Relativistic definition of energy
- Relativistic definition of energy: by comparison of 6.1 with 6.2

$$E = \gamma m_0 c^2$$

6.8 Relativistic definition of E and p: summary

- Energy: $E = \gamma m_0 c^2$
- Momentum: $p = \gamma \beta m_0 c$
- Invariant (rest) mass:

$$\left[m_0c^2\right]^2=E^2-(cp)^2$$

6.9 Lorentz transformation of energy and momentum

$cp_z = cp_z'$	$cp_{\mathbf{z}}' = cp_{\mathbf{z}}$
$cp_{y} = cp_{y}'$	$cp_{y}'=cp_{y}$
$cp_{X} = \gamma(cp'_{X} + \beta E')$	$cp_X' = \gamma(cp_X - \beta E)$
$\boldsymbol{E} = \gamma (\boldsymbol{E}' + \beta \boldsymbol{c} \boldsymbol{p}_{\boldsymbol{X}}')$	$E' = \gamma (E - \beta c p_X)$
Inverse transformation	Transformation