Relativity – Lecture 3

Space and time

Lecture 3: Space and time

3.1 Length contraction

Event 1: light pulse sets off

Event 2: light pulse is reflected

Event 3: light pulse returns

- n Analyse from point of view of O in S':
 - n Event 1: Light pulse sets off:

$$t_1'=0$$

$$x_1'=0$$

n Event 2: Light pulse reflected:

$$t_2' = \frac{L'}{c} \qquad x_2' = L'$$

$$t_2' = \frac{L'}{c}$$

$$x_2' = L'$$

n Event 3: Light pulse returns:

$$t_3' = \frac{2L'}{c} \qquad x_2' = 0$$

$$x_2' = 0$$

n 'Round-trip' time in S':

$$T' = \frac{2L'}{c}$$

Lecture 3: Space and time

n Analyse from point of view of O in S:

Event 1:

$$t_1 = 0$$

Event 2:

$$t_2 = \frac{L}{c} + \frac{ut_2}{c}$$

$$\Rightarrow t_2 = \frac{L}{c - u}$$

Event 3:

$$t_3 = t_2 + \left[\frac{L}{c} - \frac{u(t_3 - t_2)}{c}\right]$$

$$\Rightarrow (t_3 - t_2) = \frac{L}{c + u}$$

n Round-trip time in S: $T = \frac{L}{c-u} + \frac{L}{c+u} = L \left[\frac{c+u+c-u}{c^2-u^2} \right] = \frac{2L}{c} \frac{1}{1-\frac{u^2}{c^2}}$

i.e:
$$T = \frac{2L\gamma^2}{c}$$

n In S' Event 3 occurs at same position as event 1 ... so time dilation formula applies:

$$T = \gamma T' = \gamma \left(\frac{2L'}{c}\right)$$

Substituting: $\frac{2L\gamma^2}{c} = \gamma \left(\frac{2L'}{c}\right) \Rightarrow L = \frac{L'}{\gamma}$

Lecture 3: Space and time

n Length contraction:

$$L = \frac{L'}{\gamma}$$

- ⁿ Length L defined at instant t = 0 (i.e. when coordinate axes coincide).
- Length contraction formula holds when distance between two events is measured at the same instant.

3.2 Relativity of space and time

... summary so far

Time coord	$\Delta t = \gamma \Delta t'$	Time dilation
Coord // to relative mot ⁿ	$\Delta \mathbf{x} = \frac{\Delta \mathbf{x'}}{\gamma}$	Length contraction
Coords ⊥ to relative mot ⁿ	$\Delta y = \Delta y'$	
	$\Delta z = \Delta z'$	

Lecture 3: Space and time

Two events are only simultaneous in ALL inertial frames if they take place at the same point in space

3.4 Proper length and proper time

Definition 1:

n Proper time:

n time difference between two events in inertial frame in which the two events occur at the same position

Definition 2:

Proper length:

- n length of object in inertial frame in which it is at rest;
- n distance between two events in inertial frame in which time interval between two events is zero

Lecture 3: Space and time

3.5 Invariant interval

n In each inertial frame S, S' and S'', analyse the three events:

n Event 1: Light leaves mirror 1

n Event 2: Light reflected at mirror 2

n Event 3: Light returns to mirror 1

n Event 1: Light leaves mirror 1

In S: $x_1 = 0$ $t_1 = 0$

In S': $x_1' = 0$ $t_1' = 0$

In S'': $X_1'' = 0$ $t_1'' = 0$

Event 2: Light reflected at mirror 2

In $S: x_2$

*t*₂

In S': $x_2' = 0$ $t_2' = \frac{L}{c} = \frac{\tau}{2}$

 $\ln S'': x_2'' \qquad t_2''$

n Event 3: Light returns to mirror 1

 $\ln S: x_3$

In S': $x_3' = 0$ $t_3' = \frac{2L}{c} = \tau$

In S'': x_3'' t_3''

Lecture 3: Space and time

n Total distance travelled:

In S: $2\sqrt{L^2 + \frac{(x_3 - x_1)^2}{4}} = 2\sqrt{L^2 - \frac{\Delta x^2}{4}}$

In S': $2\sqrt{L^2 + \frac{(x_3' - x_1')^2}{4}} = 2\sqrt{L^2 - \frac{\Delta x'^2}{4}} = 2L$

In S": $2\sqrt{L^2 + \frac{(x_3'' - x_1'')^2}{4}} = 2\sqrt{L^2 - \frac{\Delta x''^2}{4}}$

n Time taken to travel total distance:

In S: $t_3 - t_1 = \Delta t$

In S': $t_3' - t_1' = \Delta t' = \tau$

In S'': $t_3'' - t_1'' = \Delta t''$

Speed of light (constant)

In S: In S': In S':
$$c = \frac{2\sqrt{L^2 + \frac{\Delta x^2}{4}}}{\Delta t} = \frac{2\sqrt{L^2 + \frac{\Delta x'^2}{4}}}{\Delta t'} = \frac{2\sqrt{L^2 + \frac{\Delta x''^2}{4}}}{\Delta t''}$$

n Rearrange equations, solve for 4L2

In S: In S': In S'':
$$4L^{2} = c^{2}\Delta t^{2} - \Delta x^{2} = c^{2}\Delta t'^{2} - \Delta x'^{2} = c^{2}\Delta t''^{2} - \Delta x''^{2}$$

Lecture 3: Space and time

Since coordinates transverse to the relative motion do not transform, can generalise to give *invariant interval*:

$$c^{2}\tau^{2} = c^{2}\Delta t^{2} - \Delta x^{2} - \Delta y^{2} - \Delta z^{2}$$

$$= c^{2}\Delta t'^{2} - \Delta x'^{2} - \Delta y'^{2} - \Delta z'^{2}$$

$$= c^{2}\Delta t''^{2} - \Delta x''^{2} - \Delta y''^{2} - \Delta z''^{2}$$