K. Long, 29 November 2004

Relativity — Lecture 3

Space and time

Lecture 3: Space and time
" 3.1 Length contraction
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» Analyse from point of view of Oin S
~ Event 1: Light pulse sets off:

=1 =0 xj=0
n Event 2: Light pulse reflected:

[ WWE D) ——' Xp =L
» Event 3: Light pulse returns:

(. n=% x5=0
» ‘Round-trip’ time in S”:
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Lecture 3: Space and time
» Analyse from point of view of Oin S:
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» In 8§ Event 3 occurs at same position as
event 1 ... so time dilation formula applies:
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l.e: T =
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n Length contraction:
LI

L="
Y

Length L defined at instant t = 0 (i.e. when
coordinate axes coincide).

Length contraction formula holds when
distance between two events is measured at the

same instant.
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3.2 Relativity of space and time
.. Summary so far

Time coord At = yAl' Time dilation
Coord // torelative mot" | Ax = A;( Length contraction
Ay = Ay’
Coords Oto relative mot"| =7 y
Az =Az
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3.3 Simultaneity InS*
¢ | photons arrive at x’=0and x" =
1y V1 | d at the same time
In S: u
O observes photon &

toarriveatx =0
before photon

arrivesatx =d’
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n Two events are only simultaneous in ALL inertial
frames if they take place at the same point in
space
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3.4 Proper length and proper time

» Definition 1:

Proper time:

» time difference between two events in inertial frame
in which the two events occur at the same position

» Definition 2:

Proper length:
» length of object in inertial frame in which it is at rest;

» distance between two events in inertial frame in
which time interval between two events is zero
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3.5 Invariant interval )
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» In each inertial frame S, S  and S, analyse
the three events:
Event 1: Light leaves mirror 1
Event 2: Light reflected at mirror 2
Event 3: Light returns to mirror 1
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» Event 1: Light leaves mirror 1
InS: x4=0 =0
InS': x3=0 =0
InS": x{=0 #{=0

» Event 2: Light reflected at mirror 2

InS: X2 to
I T ' _L_T
InS. X2—0 t2_C_2
InNS": x5 fo
» Event 3: Light returns to mirror 1

INS: X3 i3
InS': x3=0 t3=2L=r1
InS": x3 i3
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» Total distance travelled:

InS: 2\/L2+(XI’>‘4"1)2=2\/L2_iA4x2
InS': 2Jﬁ+i%;ﬁf=2Jg_¢{2
InS”:2¢B+lﬁ;ﬁF=2Jﬁ_Aﬁe

» Time taken to travel total distance:

INS: t3-t=At
InNS': i3-H=At'=1
InS": t§-t=At"

2L
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» Speed of light (constant)

InS: InS': InS":

JEaG LICA SR &
At Atl' At"

C =

» Rearrange equations, solve for 4L?
InS: InS': InS":
412 = A2 -Ax? = AAar? -ax? = Aar? - ax?
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n Since coordinates transverse to the relative
motion do not transform, can generalise to
give invariant interval:

c%1? = c?At® - Ax? —Ay2 - AZ?
= c?At"% - Ax"? - Ay"% - p2"?




