Study Guide and Problem Sheet/Classwork Lecture 7: Differentiation

Learning Outcomes

Jargon

Increment, derivative with respect to x, differentiate, stationary points, maximum, minimum, point of inflexion.

Notation

$$\delta x, \frac{dy}{dx}, \frac{d^2y}{dx^2}, f'(x), f''(x)$$

Concepts

How to find the gradient at a point on a curve geometrically; differentiation from first principles; the product rule for differentiating; the chain rule; how to differentiate exponentials and logarithms (to base e); how to determine the stationary points of a function; how to distinguish the different types of stationary points; how to use differentiation to find small increments.

Problems

1. Differentiate from first principles:

(a)
$$y = 3x^2 + x$$
 (b) $y = x^3$ (c) $y = \frac{1}{x}$

- 2. (a) Consider the function $y = \sin x$. For a small increment in x there is a corresponding small increment in y. Use the following identity (proved in Problem Sheet 4): $\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$ and the small angle approximations (also proved in Problem Sheet 4): $\sin\theta \simeq \theta$ and $\cos\theta \simeq 1 \theta^2/2$, to show that $\delta y = \delta x \cos x \frac{\delta^2 x}{2} \sin x$. Hence, show that $\frac{dy}{dx} = \cos x$.
 - (b) Now consider $y = \cos x$. Using the identity (again proved in Problem Sheet 4): $\cos(\theta + \phi) = \cos\theta\cos\phi \sin\theta\sin\phi$, and the small angle approximations, find an expression for δy in terms of $\sin x$, $\cos x$ and δx , and, hence, show that $\frac{dy}{dx} = -\sin x$.
- 3. Use the chain rule to differentiate the following:
 - (a) $y = (3x + 2)^2$ (b) $y = (7x^2 + 1)^{10}$ (c) $y = (2x 3)^{-4}$ (d) $y = (\alpha x + \beta)^n$ (e) $y = \ln(\alpha x + \beta)$
- 4. (a) Consider a function formed from the product of two functions, y = uv, where u = f(x) and v = g(x). If x is increased by δx there are corresponding small

increments δu , δv and δy in u, v and y. Show that $\delta y = u\delta v + v\delta u + \delta u\delta v$, and, hence, obtain the product rule for differentiating.

- (b) Use the chain rule to show that, if $w = v^{-1}$ then $\frac{dw}{dx} = -v^{-2}\frac{dv}{dx}$. Use this result and the product rule to show that if $y = \frac{u}{v}$ then $\frac{dy}{dx} = \frac{1}{v}\frac{du}{dx} \frac{u}{v^2}\frac{dv}{dx}$.
- 5. Use the product rule to differentiate the following:

(a)
$$y = x(x+1)$$

(b)
$$y = x(4x+3)^2$$

(a)
$$y = x(x+1)$$
 (b) $y = x(4x+3)^2$ (c) $y = 7x^3(2x+1)^{-1}$

(d)
$$y = 4xe^{2x}$$

(d)
$$y = 4xe^{2x}$$
 (e) $y = (4x - 2)^2 \ln x$

6. Find the first and second derivatives of the following:

(a)
$$f(x) = 2x^7$$

(b)
$$f(x) = -3x^{-2}$$

(a)
$$f(x) = 2x^7$$
 (b) $f(x) = -3x^{-2}$ (c) $f(x) = (x+5)^{10}$ (d) $f(x) = 3e^{5x}$ (e) $f(x) = \ln(x+1)$

(d)
$$f(x) = 3e^{5x}$$

(e)
$$f(x) = \ln(x+1)$$

7. Find the first and second derivatives of the following functions. Hence, find the stationary points of each one, and determine if they are maxima, minima, or points of inflexion.

(a)
$$y = x^2 - 2x + 5$$
 (b) $y = 3x - x^3$ (c) $y = \frac{4}{x} + x$

(b)
$$y = 3x - x^3$$

(c)
$$y = \frac{4}{x} + 3$$

- 8. If y = f(x) then a small increment in x produces a corresponding small increment in y. But for small increments $\frac{\delta y}{\delta x} \simeq \frac{dy}{dx}$, i.e., $\delta y \simeq \delta x \frac{dy}{dx}$. We can use this to find approximate values of functions.
 - (a) For $y = \ln x$, show that $y + \delta y \simeq \ln x + \delta x/x$
 - (b) To find an approximate value of $\ln(1.05)$ take x=1 and $\delta x=0.05$. Find y and the approximate value of δy , and, hence, estimate $\ln(1.05)$. Compare your answer with the calculator value.
 - (c) Estimate $\sqrt{26}$, and, having done so, compare your answer with the calculator value.