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1.

(i)

(if)
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Evaluate the limits:

(a) i sin(lnz)

z—1 cos (%1) !

(b) lim z? {(1 + 23)1/3 T} :

T—00

Sketch the function
x(z — 3)
z—4

determining the location of any zeros, asymptotes, maxima and minima,
Also determine how the function behaves for small and large z.

Find the indefinite integral

/' 2odx
J 1+a?’

Determine the path length of the function

3

L
y = — —
Y iz

between 2 =1 and z = 2.

Show that there are three stationary points of the function
flz,y) = gt 4+ 42%y? - 22% + 247 — 1
and determine their nature.
Is the following an exact differential ?
(¥ + ye®ydr + (" + ze¥ — 1)dy.

If so, of what function?
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(@)

(1)

(iii)
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The nth roots of unity are zy, z2, 23, ... 2, . Write down an expression for zz,
the general term in the sequence, and show that the roots can be written as a
geometric sequence of the form 1, w, w?, ... w" !, Obtain an expression for

w, the ratio of successive terms.

A finite geometric series of n terms can be summed:

o+ o™l = % DO NOT PROVE
— I

S = a + ar + az’

Use this result to show that the sum of the nth roots of unity is zero.

Find the real and imaginary parts of the three values of 1'/3, Sketch them in

the complex plane and check that the real and imaginary parts of the sum of
the three values are both zero.

If the vectors w, v, w are linecarly independent, then any 3-dimensional vector
can be expressed as r = au + Jv +yw.

Show that

r(w x u) _ r(uxwv)

u.(v X w)

Show that the vectors u = i+3, v = j+k, w = i+k arc linearly independent.

Find the values of «, 3 and « required to write the vector » = 44 in terms of
the vectors w, v, w defined in part (ii).

Find the eigenvalues and normalized eigenvectors of the matrix
4 =2
A =
(s 1)
Write down the matrix B = A% (= AA).

Find the eigenvalues and normalized eigenvectors of the matrix B, and comment
on how they are related to the eigenvalues and normalized eigenvectors of A.
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7. State Stokes’s theorem, identifying the regions over which the integrations are carried
out and the quantitics that are being integrated.
Consider the line integral

/[Pda: + Qdy + Rdz] ,
c

where P, ) and R arc functions of z, yand z. Determine the criterion for this
integral to be independent of the path C connecting given initial and final points
in terms of the curl of an appropriate vector. How does this criterion imply the
existence of a potential ?

(i)

(if)

(iii)

Consider the vector field
V = yi.

/V-dr,
C

where C is the circle of radius R in the  — y plane centred at the origin, and
the integral is taken in the counterclockwise direction (looking down from the
positive z-axis).

Evaluatce the linc integral

Evaluate the integral

[ [ xvias,

where S is the curved surface of the upper half-sphere of radius R centred at
the origin.

What does Stokes’s theorem say about the integrals in (i) and (ii) 7

Suppose § is now the surface of a circular cylinder, open at the bottom and
closed at the top, of height A, whose base is a circle of radius R in the z-y plane
centred at the origin. What is the value of the surface integral in (ii) over the
new surface §7

PLEASE TURN OVER
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8. State the divergence theorem. Your answer should describe the integrations that are
carried out and the quantities that are integrated. Consider the volume V bounded
below by the z-y plane and above by the upper half-sphere z? + y? +2% = 4 and
inside the cylinder 2% + 4% = 1.

Given the vector field
A = zi + yj + zk,

use the divergence theorem to calculate the flux of A out of V' through the spherical
cap on the cylinder.

9. Consider a system composed of two species X and Y with fractional populations x
and vy, respectively, where @ + y = 1. The two species interact in such a way that
the differential equation for x is

dx

5 = Ay,

where A(t) = Age™ %!, and « and Ag arc non-negative constants. Solve the equation
by scparation of variables and hence show that the solution for 2(0) = xq is

wg exp[Ao(1 —e™*)/a]

@) = 12 2o + wo exp[Ao(l —e ) /a] |

Use this solution to obtain the following:
(i) The value of z(t) as t — oo for & > 0.
(ii) The value of x(t) if we first let £ — oo and then let o — 0.

(iii) By using L’Hépital’s rule, or otherwise, show that for finite ¢, in the limit & — 0,
the time-dependent solution becomes

g eAot

1 —zg+ zgedot

z(t) =

wt
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10. Solve the differential equation

dx -
hind A S A wt
It + Az e

and hence show that the solution with the initial condition z(0) =« is
z(t) = (zo— B)e™™ + Be™',
where

A
A +iw

Use this solution to solve the differential cquation

d
d_jj + Az = Acoswt

with the initial condition x(0) = ag.

END OF PAPER
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