Problems for Lecture 6: Geometry

In questions 1-3, we consider the two-dimensional space \mathbb{R}^2 .

- 1. Write down the vector equation of a straight line through $\mathbf{r}_1 = 3\mathbf{i} + 4\mathbf{j}$ and $\mathbf{r}_2 = 8\mathbf{i} 5\mathbf{j}$. Show that the equation can be written in the form $\frac{x-3}{5} = -\frac{y-4}{9}$.
- 2. Write down the vector equation of a straight line of gradient 3 with an intercept on the y-axis at y = -2. Obtain the Cartesian (x-y) form as well.
- 3. For the lines of questions 1 and 2, find
 - (a) the direction ratios,
 - (b) the direction cosines,
 - (c) the unit normal vectors,
 - (d) the angle between the two lines,
 - (e) the angle between the two normals,
 - (f) the perpendicular distances from the origin.

In questions 4-5 we consider the three-dimensional space \mathbb{R}^3 .

4. Write down the vector equation of a straight line through $\mathbf{r}_3 = 2\mathbf{i} + \mathbf{j} - 3\mathbf{k}$ and $\mathbf{r}_4 = 7\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$.

Show that the equation can be written in the form $\frac{x-2}{5} = \frac{y-1}{-3} = \frac{z+3}{7}$.

- 5. Show that $\frac{x+2}{2} = \frac{y+8}{5} = \frac{z+5}{3}$ and $\frac{x-10}{4} = \frac{y-22}{10} = \frac{z-13}{6}$ represent the same line.
- 6. **Exam April 2006.** (Slightly modified version ©)

Prove De Moivre's Theorem, that is, $(\cos \theta + i \sin \theta)^n = \cos n\theta + i \sin n\theta$.

If
$$z_1 = 3 - 4i$$
 and $z_2 = -\sqrt{3} + i$,

- (i) find the real and imaginary parts of z_1^{-1} ;
- (ii) find the moduli and principal value of the arguments of z_1, z_2 and $\frac{z_2}{z_1}$;
- (iii) find the modulus and principal value of the argument of z_2^7 ;
- (iv) find the modulus and arguments of all values of $z_i^{\frac{1}{2}}$;
- (v) plot the results of (iv) in the complex plane.

Now let z denote a complex number and consider the equation $z^8 = 1$.

- (vi) How many different solutions does this equation have?
- (vii) Find all the solutions to the equation and plot them in the complex plane.