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Fact Sheet 8 – Matrix Inversion 
How to find the inverse of a matrix using a specific formula with a detailed example.   

• Only non-singular square matrices have inverses, that is, square matrices A  for which 
the determinant is non-zero: det 0≠A . 

• When A  is invetible, the formula for the inverse is 1 adj
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 where adjA  is the so-

called adjoint matrix of A . 

• The adjoint matrix of A  is defined by adj t=A C , where C is the associated matrix of 
the cofactors of A  i.e., the adjoint matrix of A is the transposed matrix of its cofactors. 

• The matrix of the cofactors is the matrix obtained by replacing every element ija  of A  

the associated cofactor , where ijA  is the ij th minor of A  (i.e., the 
)  matrix obtained from A  by removing the i th row and the 
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• For a 2 2×  matrix A  with det 0,≠A  the inverse 
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The following example is from question 3 of the Problems for Lecture 12: 

The task is to find the inverse of the matrix 
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A ⎟ .  The determinant of  is  

easily shown to be 2, which confirms that  has an inverse.  The 
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the inverse matrix  for  is  1−A A
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It is readily verified that  

7 711 11
2 2 2 2
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4 1 2 3 1 2 3 4 1 0
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Cosine and sine rules 
Simple proofs of these well-known rules are given below. 
 
The Cosine Rule
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Using Pythagoras on the left-hand right-angled triangle yields 

2 2 2 2 2 2 2( cos ) ( sin ) (cos sin ) 2 cosc a b b a b abγ γ γ γ= − + = + + − γ  

leading to 

 
   2 2 2 2 cosc a b ab γ= + −  

 
 
The Sine Rule 
 
From the diagram, it is evident that  
 

sin sinc bβ γ=  
 
and hence   

sin sin
b c
β γ
=  

The result is readily extended to include the third side and the third angle to read 
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