
Mathematical Techniques II: Algebra (Physics Year 1 Term 1)  FS13 (L17 & L18) 07&10/12/2007 

Fact Sheet 13 – 2nd Order ODEs 
Undamped Equations 

(1) 2x xα=  

The trial solution ( ) utx t Ae=  yields 2 2 2 2u x x u uα α α= ⇔ = ⇔ = ± , so the general solution is 
( ) t tx t Ae Beα α+ − . = +

The two adjustable constants A and B must be chosen to match the initial conditions at . 0t =

If 0(0)x x A≡ = + B  and 0(0) ( )x v A Bα≡ = − , it follows that ( )01
02

vA x α= +  and ( 01
02

vB x )α= − .  

This leads to ( ) ( )te01 1
0 2 2

vt t tx e e e( )x t α α α
α

+ − += + + − fore α− , and there

0
0( ) cosh sinhvx t x t tαα α= +  

(2)  2
0x xω= −

The trial solution ( ) utx t ae=  yields 2 2 2 2
0 0u x x u u i 0ω ω= − ⇔ = − ⇔ = ± ω , so the general solution is 

0( ) i tx t ae be 0i tω ω−++= . Since ( )x t  is real, we have *b a= . Writing a a ie φ=

( )0 0( ) ( )i t i te

 then we have 
0 0i ti iae e( ) i tx t ae e a eω ω ω φ ω φ+ + − ++φ φ+ −−= + =  which leads to the general solution 

0 0( ) 2 cos( ) cos( )x t a t A tω φ ω φ= + = +

 and A

 

The two adjustable constants φ  must be chosen to match the initial conditions. 

Damped Equations  

(3)  2
02 0x x xω+ Γ + =

The parameter Γ  represents friction or resistance. When 0Γ = , we recover the undamped Eq. (2). 

The trial solution ( ) utx t Ae=  yields 2 2
02 0u u ω+ Γ + = ⇔ ( )

2 2
0 2 2

0
2 4 4

2
u

ω
ω

− Γ ± Γ −
= = − Γ ± Γ −

2

. 

 

Three separate cases need to be considered depending on the value of 2
0ωΓ −  which determines 

whether the equation for u has two real solutions ( 2
0
2ωΓ > ), one real (double) solution ( 2

0
2ωΓ = ), or 

two imaginary solutions ( 2
0
2ωΓ <

ed Moti
ped Motion, 

ped Moti

). The three qualitatively different cases are commonly known as 

 

2 2
0

2 2
0

2 2
0

     Overdamp on,     
 Critically dam
     Underdam on.    

ω
ω
ω

⎧Γ >
⎪Γ =⎨
⎪Γ <⎩
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( )2 2
0 0Overdamped Motion ω ωΓ > ⇔ Γ >  

In this case , so 2 2
0 0ωΓ − > 2 2

0( )u ω μ±= − Γ ± Γ − = −  where we define the two real numbers 

2 2 2
+ 0  and 2

0μ ω μ−= Γ + Γ − = Γ − Γ −ω . Therefore, the general solution is  

( ) t tx t Ae Beμ μ− −− += +  

The two adjustable constants  must be chosen to match the initial conditions.  and A B

 

Underdamped Motion ( )2 2
0 0ω ωΓ < ⇔ Γ < . 

In this case Γ − , so 2 2
0 0ω < 2 2

0 = u i 0iω ω′= −Γ ± −Γ −Γ ±  where we define 2 2
0 0ω ω′ = −Γ . 

Therefore, 

( 0( ) i t i ttx t e ae beω ω′+ −−Γ= + ) ( )0′ . Since x t  is real, we have b *a= . Writing ia ae φ= , we find 

( ) ( )0 0 0 0( ) )i t i ti te a eω ω φ′ ′ ′ ′+ − + (i te ω φ+ −( ) i tt ix t e ae e aeωφ φ−Γ − e−Γ +⎡ ⎤== + +⎣ ⎦  so the general solution is 

0 0( ) 2 cos( ) cos( )t tx t ae t Ae tω φ ω φ−Γ −Γ′ ′= + = +

 and A

 

The two adjustable constants φ  must be chosen to match the initial conditions. Note that 
with  we recover the solution to Eq.(2). 0Γ =

 

( )2 2
0 0Critical Damped Motion ω ωΓ = ⇔ Γ =  

In this case,  and the only solution would appear to be u = −Γ ( ) tx t Ae−Γ= ; but this is 
unsatisfactory because it has only one adjustable constant A.  The general solution is actually 

 ( ) ( ) tx t A Bt e−Γ= +  

See Problem Sheet 17 question 4 for a proof of this result. 

The two adjustable constants  must be chosen to match the initial conditions.  and A B

The picture below shows graphs of the solutions for values of  0/ωΓ  corresponding to all three cases.  
The time axis is in units of 02 /π ω 20, 5, 2,1, 0.5, 0.1, and 0.005..  Results are displayed for 0/ωΓ =  

 2
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Driven (or Forced) Oscillation and Resonance 

(4) 2
02 cosx x x F tω ω+ Γ + =  

The term cosF tω  represents a driving force. When 0F = , we recover the damped Eq. (3). 

Let (( ) Re ( ))x t x= t  and construct the analogous complex differential equation namely 

 2
02 i tx x x Fe ωω+ Γ + = . 

Let ( ) i tx t Ae ω=  denote a trial solution. Substituting ( )x t  into the complex differential eq., we find   
2 2i t 2i t i t i t

0Ae i Ae Ae Feω ω ω ωω ω− + ωΓ + = , that is, ( )2 2 F0i Aω ω ω2− + Γ + =  which yields an eq. for :A  

2 2
0 2

F
i

A
ω ω ω− +

=
Γ

. Therefore 2 2
0

( )
2

tiFt e
i

ωx
ω ω

=
ωΓ− +

. In order to facilitate taking the real part to 

find ( )x t , we write ( ) )(
2 22 2 2 2

0 0
ii2 2 e δω ω ω ω ω− + Γ = − Γω+ , where 2

0

2tan 2
ωδ

ω ω
Γ

=
−

. Then 

( ) ( )
( )

22

i te
2

Fx t
2 2
0

( ) ω δ

ω

−

Γω ω
=

− +
 and it follows that the general solution to Eq.(4) is  

  

( )
( ) ( )

( )
2 22 2

0

( ) Re ( ) cos
2

Fx t x t tω δ
ω ω ω

= = −
− + Γ

 , where 2 2
0

2tan ωδ
ω ω

Γ
=

−
.   

 

Three special cases are worth mentioning: 

( )0Very low drive frequency ω ω  

In this case, ( ) ( )
2 22 2 2

0 02ω ω− + Γ ≈ω tan 0 0δ δ+, ≈ ⇔ ≈  so 2
0

( ) cos .Fx t tω
ω

≈  ω

 

Very high drive frequency ( )ω 0ω  

In this case, ( ) ( )
2 22 2 2

0 2ω ω ω− + Γ ≈ω tan 0, δ δ π−≈ ⇔ ≈  so 

2 2( ) cos( ) cos 0 asω→ →∞.  F Fx t t tω π ω
ω ω

≈ − = −

 

( )0Drive frequency equal to nominal resonance frequency ω ω=  

In this case, ( ) ( )
2 22 2

0 02 2ω ω ω ω− + Γ = Γ , tan
2
πδ δ= ∞⇔ =  so 

 2
0 0

( ) cos( ) sin .
2 2

F Fx t t π tω ω
ω ω

= − =
Γ Γ
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2 2
0 2iω ω ω− + Γ

,
There is an important approximation to  that applies near resonance and simplifies the 
mathematics considerably. When 0 0ω ω≈ an write  ω ω≠ , one c

[ ]2 2
0 02 ( )( (2 )( )iω ω ω ω ω ω ω ω ω− + Γ = + − +0 0 0 0 0 0) 2 2 2 ( )i iω ω ω ω ω ω− + Γ ≈ Γ = − + Γ  i

in which case ( )22 2 2
0 0 02 2 ii e ,δω ω ω ω ω ω− + Γ ≈ − +Γ  where 

0
tanδ

ω ω
Γ

=
−

. Hence, the solution is 

( )
( )

( )
2 2

0 0

( ) Re ( ) cos
2

Fx t x t tω δ
ω ω ω

= =
− +Γ

 −

Graphs of 
( ) ( )

2 22 2
0 2

F

ω ω ω− + Γ
 and 

( ) ( ) ( )2 22 2
0 0 0 0 02 2 1 /

F F

ω ω ω ω ω ω ω
=

− +Γ − + Γ 2/
 versus 

0/ω ω , F = 1, and .1 0/ 0ωΓ =
 better as 

, with 0 1ω =  are shown below with solid line and dotted line, 
respectively. T roximation gets 0/he app ωΓ  gets smaller.   
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Supplement – A driven 1st-order ODE: 
Solved with and without complex numbers 

 
Consider the 1st-order ordinary-differential equation (ODE)  

cosdx ax B t
dt

ω+ =              (1) 

which is a Type C equation according to the classification of Fact Sheet 1. Notice the simple harmonic 
driving term with amplitude B on the right hand side. The parameter ω is the angular frequency, which 
is related to the natural frequency f and period  by T 2 2 /f Tω π π= =  (often, the symbol ν  is used 
instead of f). Please refer to question 8, Problem Sheet 1 for an earlier encounter with this equation. ☺   
 
Solution without using complex numbers 

Substituting the trial solution ( ) cos( )x t A tω φ= − , where φ  represents a phase lag, into Eq.(1) yields 
 

) t( ) (

( ) ( )
0

sin( ) cos( ) cos

sin cos cos sin cos cos sin sin cos

cos sin cos sin cos sin cos

A t aA t B t

A t t aA t t B

A a t A a t B t

ω ω φ ω φ ω

ω ω φ ω φ ω φ ω φ ω

φ ω φ ω φ ω φ ω ω
=

− − + − =

− − + + =

+ + − =

    (2) 

Notice that the coefficient of sin tω  must be set to zero for the equation to be fulfilled. Hence, it 
follows immediately that 

tan / aφ ω= .              (3) 

From the coefficient of the cos tω  terms, one now obtains  

( ) ( )
2 2

2 2 2

1 1 /
cos sin cos tan /

B B BA a
a a a a a

ω
φ ω φ φ ω φ ω

B

ω
= = = + =

+ + + +
,   (4) 

where we have used Eq.(3) ( ) 1 2 2sec cos 1 tan 1 / aφ φ φ ω−≡ = + = + 2 . Hence, we obtain 

2 2
( ) cos( ) cos( )Bx t A t t

a
ω φ ω

ω
= − =

+
φ− , where tan / aφ ω= .      (5) 
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Solution using complex numbers 

Introduce the complex number ( )x t , where ( )( ) Re ( )x t x t= , and consider the complex equation 
ssociated with Eq.(1):  a

i tdx ωax Be
dt

+ = .              (6) 

i tx Ae ω=Notice that the real part of Eq. (6) is exactly Eq.(1). Substituting the trial solution  into 
Eq.(6), we find 

i t i t i t i ti x ax Be i Ae aAe Beω ω ω ωω ω+ = ⇔ + = ,          (7) 

so by dividing the equation through by the common (non-zero) factor i te ω , we obtain 

Bi A aA B Aω
a iω

+ = ⇔ = .    
+

        (8) 

 follows immediately that the (complex) solution to Eq. (6) is  It

( ) i t i tBx t Ae e
a i

ω ω

ω
= =

+
.            

 (9) 

Since 2 2 ia i a e φω ω+ = +  where tan / aφ ω= , Eq.(9) becomes 

( )
2 2

( ) i tBx t e ω

a
φ−=             (10) 

ω+

Taking the real part of (x t) , one obtains the (real) solution to the original Eq.(1)  

( )
2 2

( ) Re ( ) )x t x t t
a

B cos(ω φ= = −
ω+

, with tan / aφ ω=            (11) 

which is identical (of course) to Eq.(5).    

Conclusion  
 solved more easily using complex numbers since there is no need to 

remember any trigonometric relationships. Indeed, the advantage can be much greater in more 
complicated situations!  

 

 Note on Notation

It is fare to say that Eq.(1) is

A  
he symbol B has been used for the amplitude of the driving term on the present Fact Sheet for 
onsistency with the lectures and question (f) of Classwork 7.  However, the symbol A was used for 
is parameter in question 8 of Problem Sheet 1. This inconsistency is unfortunate and I am sure your 

een eyes and brains have spotted others as well. If you have, please do let me know by sending me an 
-mail k.christensen@imperial.ac.uk

T
c
th
k
e  and I will correct the matter so future generation of Imperial 

ollege London students can benefit from your work ☺.  C
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