Classwork 5 – Discover the Orthogonal Matrix

Definition: A unit vector $\hat{\mathbf{a}} \in \mathbb{R}^n$, $|\hat{\mathbf{a}}| = 1$ is called a *normalised* vector. Two vectors $\mathbf{a}, \mathbf{b} \in \mathbb{R}^n$ that are perpendicular to each other, $\mathbf{a} \cdot \mathbf{b} = 0$, are called *orthogonal*, and two unit vectors $\hat{\mathbf{a}}, \hat{\mathbf{b}} \in \mathbb{R}^n$ that are perpendicular to each other, $\hat{\mathbf{a}} \cdot \hat{\mathbf{b}} = 0$, are called *orthogonal*.

This present classwork, leads you to the definition of an <u>orthogonal matrix</u>. Although the questions relate to two-dimensional vectors and 2×2 matrices, the results are valid in \mathbb{R}^n .

(a) (i) Show that the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^2$ represented by the matrices $\mathbf{u} = \begin{pmatrix} u_x \\ u_y \end{pmatrix}$ and $\mathbf{v} = \begin{pmatrix} v_x \\ v_y \end{pmatrix}$ are orthonormal if $u_x^2 + u_y^2 = v_x^2 + v_y^2 = 1$ and $u_x v_x + u_y v_y = 0$.

(ii) Show that these conditions can be expressed in the matrix form $\mathbf{u}^t \mathbf{u} = \mathbf{v}^t \mathbf{v} = 1$ and $\mathbf{u}^t \mathbf{v} = \mathbf{v}^t \mathbf{u} = 0$ where \mathbf{A}^t denotes the transpose of the matrix \mathbf{A} (see page 3 on FS7).

- (b) Find the unit vector $\hat{\mathbf{a}}$ in the direction of $\mathbf{a} = \begin{pmatrix} 3 \\ -4 \end{pmatrix}$, and find two other unit vectors $\hat{\mathbf{b}}_1, \hat{\mathbf{b}}_2$ that are orthonormal to $\hat{\mathbf{a}}$.
- (c) Consider the 2×2 matrix **O** made up of the two orthonormal vectors **u**, **v** from part (a), that is, $\mathbf{O} = \begin{pmatrix} u_x & v_x \\ u_y & v_y \end{pmatrix}$. Show that $\mathbf{O}^t \mathbf{O} = \mathbf{I}$, where **I** is the identity matrix $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.

A matrix **O** satisfying $O^tO = I$ is called an <u>orthogonal matrix</u>.

(d) We will now discover some additional properties of orthogonal matrices.

(i) Consider two vectors $\mathbf{p} = \begin{pmatrix} p_x \\ p_y \end{pmatrix}$ and $\mathbf{q} = \begin{pmatrix} q_x \\ q_y \end{pmatrix}$ with $\mathbf{q} = \mathbf{A}\mathbf{p}$ where $\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$. If the

magnitudes of \mathbf{p} and \mathbf{q} are identical, what conditions are imposed on the elements of \mathbf{A} ?

- (ii) Which of the following statements is correct: (1) $\mathbf{q}^t = \mathbf{A}^t \mathbf{p}^t$ or (2) $\mathbf{q}^t = \mathbf{p}^t \mathbf{A}^t$?
- (e) Consider two vectors $\mathbf{p}_1, \mathbf{p}_2 \in \mathbb{R}^2$ which are transformed by the matrix \mathbf{A} into $\mathbf{q}_1, \mathbf{q}_2$, that is, $\mathbf{q}_1 = \mathbf{A}\mathbf{p}_1$ and $\mathbf{q}_2 = \mathbf{A}\mathbf{p}_2$, respectively. If the transformation \mathbf{A} does not change the scalar product, that is, $\mathbf{p}_1 \cdot \mathbf{p}_2 = \mathbf{q}_1 \cdot \mathbf{q}_2$ or, in matrix form, $\mathbf{p}_1^t \mathbf{p}_2 = \mathbf{q}_1^t \mathbf{q}_2$, show that $\mathbf{A}^t \mathbf{A} = \mathbf{I}$ in other words that \mathbf{A} is an orthogonal matrix. The situation in part (d) is the special case where $\mathbf{p}_2 = \mathbf{p}_1$ and $\mathbf{q}_2 = \mathbf{q}_1$.
- (f) Is the rotation matrix $\mathbf{R}_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ an orthogonal matrix? Qualify your answer.
- (g) Let $\hat{\mathbf{a}}$ and each of the vectors $\hat{\mathbf{b}}_1, \hat{\mathbf{b}}_2$ from part (b) in turn form two orthogonal matrices \mathbf{O}_1 and \mathbf{O}_2 like \mathbf{O} in part (c). If the transformation represents a rotation, find the angle. If not, try to figure out what the operation does represent.
- (h) Transform the vector $\mathbf{s} = \begin{pmatrix} -5 \\ 7 \end{pmatrix}$ using each orthogonal matrix from part (g) in turn. Check that the new vectors $\mathbf{t}_1 = \mathbf{O}_1 \mathbf{s}$ and $\mathbf{t}_2 = \mathbf{O}_2 \mathbf{s}$ have the same magnitude as \mathbf{s} . Find the angle between \mathbf{s} and each of the vectors $\mathbf{t}_1, \mathbf{t}_2$, and draw all three vectors on a diagram.