1st year Electricity and Magnetism, Tony Bell

Classwork 1 - 10th February 2005

- 1a) An electric dipole consists of charges Q and -Q on the x-axis at x = a/2 and x = -a/2 respectively (Q is positive). What is the magnitude and direction of the dipole moment \mathbf{M}_1 ?
- b) Using the expression given in the lectures for the potential due to a dipole in terms of the dipole moment, find both the potential and the electric field on the x-axis at a point x = X (X >> a).
- c) Write down expressions for the potential and the electric field at two further points on the x-axis at x = X b/2 and x = X + b/2 respectively, where $b \ll X$.
- d) A second dipole consists of charges q and -q on the x-axis at x = X + b/2 and x = X b/2 respectively (q is positive). Using the results from c), derive an expression for the net (total) force exerted on the second dipole in the limit that b is small. Terms proportional to b^2 can be neglected. If \mathbf{M}_2 is the moment of the second dipole, give the force in terms of \mathbf{M}_1 and \mathbf{M}_2 . What is the direction of the force?
- e) Using results from c), derive the potential energy of the second dipole in the field of the first dipole. Show that the energy is equal to $-\mathbf{E}.\mathbf{M}_2$ in the limit that b is very small and \mathbf{E} is the electric field derived in b).
- f) Find an expression for the energy needed to rotate the second dipole through 180° in the limit of small b. Similarly find an expression for the energy required to rotate the first dipole through 180° .
- 2. The so-called van der Waals force between neutral atoms and molecules arises from a 'dipole-dipole' interaction. The incessant movement of the the bound electrons means that an atom or molecule will exhibit a fluctuating dipole moment \mathbf{M}_1 , which in turn creates an induced dipole moment \mathbf{M}_2 in a neighbour. Making the reasonable assumption that the magnitude of \mathbf{M}_2 is proportional to the field of \mathbf{M}_1 , demonstrate that the van der Waals force varies as the inverse 7th power of the separation between them (ie force $\propto 1/r^7$ where r is the distance between the molecules). Is the van der Waals force attractive or repulsive?

adapted from a classwork by GHC New