
M2PM3 SOLUTIONS 2. 29.1.2009

For Questions 1-4, a useful reference is
W. RUDIN, Principles of mathematical analysis, 3rd ed., McGraw-Hill, 1976.
Q1. If f is continuous on X under the ε, δ definition of being continuous at
every point of X:

Choose any open set V in Y . We have to show f−1(V ) open in X, i.e. that
every point of f−1(V ) is an interior point of f−1(V ). If f−1(V ) is empty, it
is open; if not, it contains some point p, and then f(p) ∈ V . As V is open,
there exists ε > 0 such that y ∈ V if d(f(p), y) < ε. Since f is continuous at p,
there exists δ > 0 such that d(f(x), f(p)) < ε if d(x, p) < δ. So if d(x, p) < δ,
then d(f(x), f(p)) < ε, so f(x) ∈ V , i.e. x ∈ f−1(V ): x is an interior point of
f−1(V ), as required.

Conversely, if f−1(V ) is open for every open set V ⊂ Y :
Choose p ∈ X, ε > 0; write V := {y : d(y, f(p)) < ε}. This is open (in Y ), so
by assumption f−1(V ) is open (in X). So there exists δ > 0 such that for all
x with d(p, x) < δ, x ∈ f−1(V ). But then d(f(x), f(y)) < ε, so f is continuous
under the ε, δ definition. (See Rudin, Th. 4.8, p.86-7.)

Q2. (i) The complement of an inverse image is the inverse image of the comple-
ment (check).
(ii) A set is open iff its complement is closed (lectures).

The function f is continuous iff inverse images of open sets are open (Q1)
iff complements of inverse images of open sets are closed (by (ii))
iff inverse images of complements of open sets are closed (by (i))
iff inverse images of closed sets are closed (by (i)),
as required. (See Rudin, Corollary, p.87.)

Q3. Let {Gα} be any open covering of f(A). For each a ∈ A, f(a) belongs
to some Gα, so a belongs to some f−1(Gα). That is, {f−1(Gα)} is an open
coveing of A, and A is compact. So there is some finite subcovering of A,
f−1(G1), . . . , f−1(Gn)}, say:

A ⊂ f−1(G1) ∪ . . . ∪ f−1(Gn).

That is,
f(A) ⊂ G1 ∪ . . . ∪Gn.

So each open covering of f(A) has a finite subcovering. So f(A) is compact
(Rudin, Th. 4.14, p.89).

Q4. [a, b] ⊂ R is closed and bounded, so (Heine-Borel Theorem) compact. As f
is continuous, f([a, b]) is compact by Q3, so (closed and) bounded (Rudin, Th.
4.15, p. 89).

Q5. (i) Put x = ay:
∫ ∞

−∞

dx

x2 + a2
=

∫ ∞

−∞

dy

a2(1 + y2)
=

1
a
[tan−1 y]∞∞ =

1
a
(π/2− (−π/2)) = π/a.
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(ii)

1
(x2 + a2)(x2 + b2)

=
1

(b2 − a2)

( 1
(x2 + a2)

− 1
(x2 + b2)

)
(a 6= b).

This integrates to

1
(b2 − a2)

(π

a
− π

b

)
=

π

ab

(b− a)
(b2 − a2)

=
π

ab(a + b)
.

If a = b: let b → a in the above. The integral → π/(a2.2a) = π/(2a3). So
the answer holds for a = b also. (We shall return to this example later as an
application of Cauchy’s Residue Theorem. We note its real-variable proof now.)

Q6. (i)

F (t) =
∫ ∞

0

e−x cosxtdx = −
∫ ∞

0

cos xtdex

= −[cos xt.e−x]∞0 +
∫ ∞

0

e−x(−t sin xt)dx

= 1 = t

∫ ∞

0

sin xtde−x

= 1 + t[sin xt.e−x]∞0 − t

∫ ∞

0

e−x.t cos xtdx

= 1− t2
∫ ∞

0

e−x cosxtdx = 1− t2F (t) :

F (t)(1 + t2) = 1, F (t) = 1/(1 + t2).

(ii)
∫ ∞

−∞
eixt.

1
2
e−|x|dx =

∫ ∞

−∞
cos xt.

1
2
e−|x|dx + i

∫ ∞

−∞
sin xt.

1
2
e−|x|dx

=
∫ ∞

−∞
cosxt.

1
2
e−|x|dx = 1/(1 + t2),

by (i) (the second integral is zero: odd integrand, symmetric limits. The first
integral is twice

∫∞
0

: even integrand, symmetric limits.
Note. 1. Again, we will return to this later in a complex setting, but note this
real- variable proof now.
2. In probabilistic language, this finds the characteristic function of the sym-
metric exponential probability density 1

2e−|x| as 1/(1 + t2).
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