M2PM3 PROBLEMS 6. 5.3.2009
Q1 (Poisson kernel). Let z = re?, w = Re'®, z # w. Show that
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Q2 (Poisson integral). Let f be holomorphic on the closed disc D(0, R) := {2 :
|z| < R}, z =re € D(0,R) = {2 : |2| <}. By applying the Cauchy integral
formula to fg, where g(w) := (R? — r?)/(R? — wZ), or otherwise, show that
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Q3 Schwarz’s Formula. (1) If u is a harmonic function, and w is known on the
circle C(0, R), show that
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(C an arbitrary real constant) is holomorphic in |z| < R.

(ii) Show that f has real part u, where u is given inside the disc D(0, R) in
terms of its values on the boundary by
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(iii) Deduce that

u(z) = =1 / " u(Re'?)
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(iv) Deduce that the values of a holomorphic function f in a disc D are specified
by the values of its real part « on the boundary.

(v) Deduce that the values of f in D are also specified by the boundary values
of its imaginary part v.

d¢ (z = re'?).

Q4 (Liouwville’s theorem on C*). We say that f(z) has a property at infinity if
f(1/z) has the property at 0. Show that if f is holomorphic in the extended
complex plane C* (i.e., entire — holomorphic in C — and holomorphic at o), f
is constant.

So a non-constant entire function has a singularity at co. Give some exam-
ples.
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