
M2PM3 COMPLEX ANALYSIS: SOLUTIONS TO
EXAMINATION, 2008

Q1. (i) (1 + 2i)2 = 1 + 4i− 4 = −3 + 4i.
The quadratic z2 + 2iz + 2− 4i has roots

z =
−2i±

√
−4− 4(2− 4i)

2
,

i.e. −i± 1
2

√−4− 8 + 16i = −i± 1
2

√−12 + 16i = −i±√−3 + 4i = −i±(1+2i),
giving roots

1 + i or − 1− 3i.

(ii) The roots are where z4 = −1 = eiπ = e(2n+1)iπ. These are z = eiπ/4 (n = 0),
e3iπ/4 (n = 1), e5iπ/4 = e−3iπ/4 (n = 2), e7iπ/4 = e−iπ/4 (n = 3).

In the Argand diagram, these are the points on the unit circle with arguments
±π/4, ±3π/4 (the vertices of a square with diagonals y = ±x).
(a) The complex factorization into four linear factors is

z4 + 1 = (z − eiπ/4)(z − e−iπ/4)(z − e3iπ/4)(z − e−3iπ/4).

(b) The real factorization into two quadratics is

z4+1 = (z2−2z cosπ/4+1)(z2−2z cos 3π/4+1) = (z2−
√

2z+1)(z2+
√

2z+1).

(iii) With γ the ellipse x2/a2+y2/b2 = 1 parametrized by x = a cos θ, y = b sin θ,∫
γ

dz/z = 2πi by Cauchy’s Residue Theorem, since 1/z has residue 1 at 0.
So as z = a cos θ + ib sin θ gives dz = (−a sin θ + ib cos θ)dθ,

2πi =
∫ 2π

0

−a sin θ + ib cos θ

a cos θ + ib sin θ
dθ

=
∫ 2π

0

(−a sin θ + ib cos θ)(a cos θ − ib sin θ)
a2 cos2 θ + b2 sin2 θ

dθ

=
∫ 2π

0

(b2 − a2) sin θ cos θ + iab(cos2 θ + sin2 θ)
a2 cos2 θ + b2 sin2 θ

dθ.

Equating imaginary parts,
∫ 2π

0

ab

a2 cos2 θ + b2 sin2 θ
dθ = 2π,

whence the result on dividing by ab.
[All unseen]
Note: z = x + iy = a cos θ + ib sin θ from the hint; z (at least) is needed in the
denominator, to get a and b there; dz = (−a sin θ + ib cos θ)dθ. So we need (at
least) dz/z = [(−a sin θ+ ib cos θ)/(a cos θ+ ib sin θ)]dθ. On multiplying top and
bottom by (a cos θ − ib sin θ) to make the denominator real, it turns out that
this is all we need (see above). A direct attack using z = eiθ is possible, but
this is harder – it is geared to the unit circle, not the ellipse as here. [Note that
the result is immediate when a = b and the ellipse is a circle.]
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Q2. (i) The Cauchy-Riemann equations (C-R) are ux = vy, uy = −vx.
(ii) A harmonic function is one for which the Laplacian ∆ := ∂2/∂x2 + ∂2/∂y2

vanishes.
Differentiating partially wrt x:

uxx = vyx (C-R)
= vxy (by continuity of partials: f is holomorphic)
= −uyy (C-R).

So ∆u = uxx + uyy = 0, and u is harmonic. Similarly, v is harmonic.
(iii) Given u harmonic, integrate vy = ux wrt y:

v =
∫

uxdy + g(x)

(the additive constant of integration may involve x). Differentiate wrt x:

vx = (∂/∂x)(
∫

uxdy) + g′(x).

As vx = −uy, this gives

g′(x) = −uy − (∂/∂x)(
∫

uxdy).

Integrate to find g, hence v, hence f = u + iv.
(iv) u = x3−3xy2: vy = ux = 3x2−3y2. Integrate wrt y: v = 3x2y−y3 +g(x).
Differentiate wrt x: vx = 6xy + g′(x) = −uy = 6xy. So g′ = 0, g = constant, c
(real), w.l.o.g. 0, v = 3x2y−y3. f = u+iv = x3+3ix2y−3xy2−iy3 = (x+iy)3:
f(z) = z3.
(v) u = x/(x2 + y2): uy = −2xy/(x2 + y2)2 = −vx (simpler than ux), vx =
2xy/(x2 + y2)2. So

v = y

∫
2x

(x2 + y2)2
dx + g(y) = y

∫
d(x2)

(x2 + y2)2
+ g(y) = − y

(x2 + y2)
+ g(y),

vy = − 1
(x2 + y2)

+
2y2

(x2 + y2)2
+ g′(y) =

y2 − x2

(x2 + y2)2
+ g′(y).

By C-R,

vy = ux =
1

x2 + y2
− 2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

Comparing, g′ = 0, g = c constant, w.l.o.g. 0. So

v = − y

x2 + y2
, f = u + iv =

x− iy

x2 + y2
=

1
x− iy

: f(z) = 1/z.

(vi) As f(z) = z3 is holomorphic everywhere (entire), its real part u in (iv)
is harmonic, being the real part of a holomorphic function. As f(z) = 1/z is
holomorphic except at 0, its real part u in (v) is likewise harmonic except at
the origin. [(i) – (iii): Lectures; (iv) – (vi): Unseen]
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Q3. (i) Cauchy’s integral formula:

f(a) =
1

2πi

∫

γ

f(z)
(z − a)

dz.

(ii) For r > 0 so small that the circle γ(a, 2r) with centre a and radius 2r is
contained in the interior I(γ) of γ,

∫

γ

f(z)
(z − a)

dz =
∫

γ(a,2r)

f(z)
(z − a)

dz,

by the Deformation Lemma. Similarly, for |h| < r, with a + h in place of a.
Combining,

f(a + h) =
1

2πi

∫

γ

f(z)
(z − a− h)

dz, f(a) =
1

2πi

∫

γ

f(z)
(z − a)

dz,

f(a + h)− f(a)
h

=
1

2πih

∫

γ(a,2r)

f(z)
( 1

z − a− h
− 1

z − a

)
dz

=
1

2πi

∫

γ(a,2r)

f(z)
(z − a− h)(z − a)

dz

→ 1
2πi

∫

γ(a,2r)

f(z)
(z − a)2

dz (h → 0),

estimating the difference between the two integrands on the right using

1
(z − a− h)(z − a)

− 1
(z − a)2

=
h

(z − a)2(z − a− h)
∼ h

(z − a)2
(h → 0)

and the ML Inequality.
So f ′(a) exists, = RHS.
We may replace γ(a, 2r) by γ in RHS, by the Deformation Lemma, giving

f ′(a) =
1

2πi

∫

γ

f(z)
(z − a)2

dz.

(iii) Similarly,

f (n)(a) =
n!
2πi

∫

γ

f(z)
(z − a)(n+1)

dz.

(iv) With γ = γ(a, R), |f (n)(a)| ≤ n!M/Rn follows by the ML Inequality.
(v) f(z) is entire if it is holomorphic throughout C (i.e., no singularities in the
complex plane).
(vi) If f is entire and |f(z)| ≤ c|z|k for some c and |z| large, by (iv) with M
replaced by cRk, |f (n)(a)| ≤ n!cRk/Rn. Let R →∞: for n > k, f (n)(a) = 0 for
each a, so f (n) ≡ 0, so f is a polynomial of degree at most k.
[Seen: (i) – (v) in Lectures, (vi) in Problems 6]

3



Q4. (i) Use as contour the unit circle γ, parametrized by z = eiθ. So dθ = dz/iz,
cos θ = (z + z−1)/2.
To show:

I :=
∫ 2π

0

e3iθ

5− 4 cos θ
dθ =

π

12
. (∗)

I =
∫

γ

z3

iz[5− 2(z + 1/z)]
dz.

The denominator in the integrand is

iz[5−2(z+1/z)] = i[−2+5z−2z2] = −i[2z2−5z+2] = −i(2z−1)(z−2) = −2i(z−1
2
)(z−2).

So

I =
i

2

∫

γ

z3

(z − 1
2 )(z − 2)

dz =
i

2

∫

γ

f(z)dz,

say. Now f(z) = z3/[(z − 1/2)(z − 2)] has simple poles at z = 1/2, z = 2, only
the first of which is inside γ.
By the Cover-Up Rule,

Res1/2f =
(1/2)3

[(1/2)− 2]
= 1/[8(−3/2)] = −1/12.

So by Cauchy’s Residue Theorem, I = (1/2).2πi.(−1/12) = π/12,
proving (∗). Now take real and imaginary parts.
Note. The cosine integral can be evaluate separately, using cos 3θ = (1/2)(z3 +
z−3), but this is harder as it introduces a triple pole at z = 0. The sine integral
is clearly 0 (use limits −π and π: odd integrand, symmetrical limits).
(ii) Use as contour γ the interval γ1 := [−R, R] closed by the semi-circle γ2 on
this base in the upper half-plane, and as function f(z) := 1/(z2 + 1)2.
This has double poles at z = ±i, only z = i being inside γ.

∫

γ1

f =
∫ R

−R

→ I :
∫ ∞

−∞

dx

(1 + x2)2
(R →∞),

the required integral. As |f | = O(1/R4) on γ2,
∫

γ2
f = O(1/R3) → 0 as R →∞,

by the ML Inequality.
For z near i, write z = i + ζ, ζ small. Then z2 + 1 = (i + ζ)2 + 1 = −1 + 2iζ +
ζ2 + 1 = 2iζ + ζ2, so

f(z) =
1

(1 + z2)2
=

1
(2iζ + ζ2)2

=
1
ζ2

.
1

(−4)
.
(
1+

ζ

2i

)−2

= − 1
4ζ2

.
(
1−ζ

i
+O(ζ2)

)
.

Resif = coeff. 1/ζ = −1
4
.
(−1)

i
=

1
4i

= −i/4 : I = 2πiResif = 2πi.(−i/4) = π/2.

Combining: by Cauchy’s Residue Theorem, I = π/2.
(The residue at the double pole may also be evaluated by differentiation.)
Note: The integral can be also be evaluated by real analysis: use x = tan θ.
[All unseen – similar seen]
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