
M2AA2 - Multivariable Calculus. Assessed Coursework I
Solutions

February 23, 2009. Prof. D.T. Papageorgiou

1. (a) The force exerted on P by mass k is given by mk/rk = mk/
√

(x − ξk)2 + (y − ηk)2 + (z − ζk)2.
Due to linearity we add the resulting n forces and the result follows.

(b) Units: µR has units of mass/volume; µS has units of mass/unit area; µC has units of
mass per unit length.

To show (2)a, take a volume element dV around the point ξ in 3-dimensional space; it
has mass µ(ξ)dV and hence exerts a force µ(ξ)dV/|x − ξ| on a given point P . Now we
need to add all these forces up which means taking an integral over the volume where
the mass density has its support. The result follows.

To show (2)b-c we proceed analogously now taking integrals over the given surface S
or given curve C where µ has its support. Note that the position of P is anywhere in
space, not necessarily inside V , on S or on C for each of the three cases, and so V is a
function of x ∈ R3.

(c) The required potential is given by

V =

∫

sphere

dξ dη dζ
√

(x − ξ)2 + (y − η)2 + (z − ζ)2

=

∫

1

−1

dξ

∫

√
1−ξ2

−
√

1−ξ2

dη

∫

√
1−ξ2−η2

−
√

1−ξ2−η2

dζ
√

(x − ξ)2 + (y − η)2 + (z − ζ)2

The last integral can be carried out; it has the form
∫

du√
a2+u2

= sinh−1 u
a
, where we can

identify a2 = (x−ξ)2 +(y−η)2 and u = z−ζ by substitution. This is as far as analytical
progress goes.

(d) Begin by considering the point P to be outside of region R so that r 6= 0. Then, we can
differentiate under the integral sign and use the fact that F = ∇VR, etc.. This gives

F = −
∫ ∫ ∫

R

(x − ξ, y − η, z − ζ)

r3
dξ dη dζ, r =

√

(x − ξ)2 + (y − η)2 + (z − ζ)2.

If the point P is outside of R then the integrals are well-defined.

If P is inside the region then the integrand is singular at the point ξ = x, η = y, ζ = z.
To analyse whether the integral has a limit we use spherical polar coordinates centred
at (x, y, z), i.e. write

ξ − x = ǫ sin θ cos ϕ, η − y = ǫ sin θ sin ϕ, ζ − z = ǫ cos θ.

(I use ǫ instead of r to emphasize that we are interested in the limit ǫ → 0.) Take any
one of the forces, e.g.

F1 =

∫ ∫ ∫

ǫ sin θ cos φ

ǫ3
ǫ2dǫdθdϕ,

and clearly this has no problems as ǫ → 0, hence the integrals are convergent.
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(e) i. The required integral is

VS =

∫ ∫

sphere

dS
√

(x − ξ)2 + η2 + ζ2
.

Now introduce spherical polars to parametrise the surface of the sphere:

ξ = a cos θ,

η = a sin θ cos ϕ,

ζ = a sin θ sin ϕ.

Note that this choice helps with the integration. It is equivalent to rotating the
familiar polar coordinates system so that the θ = 0 axis contains the point P . (You
can see how this works without a rotation if the point P is at (0, 0, z), for example.)
Anyway, the integral becomes

VS =

∫ π

0

a2 sin θ
√

(x − a cos θ)2 + a2 sin2 θ
dθ

∫

2π

0

dϕ

= 2π

∫ π

0

a2 sin θ√
x2 + a2 − 2ax cos θ

dθ

Now substitute x2 + a2 − 2ax cos θ = r2 and as long as x 6= 0 we get

VS =
2πa

x

∫ |x+a|

|x−a|
dr =

2πa

x
(|x + a| − |x − a|).

ii. If P is outside the sphere, i.e. |x| > a, we have

VS =
4πa2

|x| ,

and so the potential is as if all the mass (4πa2) is concentrated at the origin.
If |x| < a, VS = 4πa, i.e. a constant.

iii. From the results above the potential across the surface is continuous.
Considering the x-component of the force (recall that the force is the gradient of
the potential), we can calculate this to be −4πa2/x2 for |x| > a and 0 for |x| < a.
Hence there is a jump by an amount −4π in crossing the surface from outside to
inside.

2. A graph of the region R is in the figure.

To calculate the area with the given change of variables we first need to identify the mapped
region: The point x = 0, y = 0 maps to u = 0, v = 0. The point x = 2, y = 1 maps to
u = 1, v = 1 and the point x = 1, y = 0 maps to u = 1, v = 0.

The line y = x/2 is u2 + v2 − 2uv = (u − v)(u + v) = 0. Given the position of the mapped
points and that this line connected (0, 0) to (2, 1) in the (x, y) plane this maps to u = v.

The curve x = 1 + y2 is u2 + v2 = 1 + u2v2 and this is satisfied by u = ±1 and from the
mapped points u = 1.
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The line y = 0 is uv = 0 and again from the mapped vertices this is u = 0.

Thus the triangle is defined by 0 ≤ u ≤ 1 and 0 ≤ v ≤ u.

Now for the integral we require the Jacobian

J =
∂(x, y)

∂(u, v)
= 2(u2 − v2)

and the integral I is

I =

∫

R
dxdy =

∫

Rnew
Jdudv =

∫

1

0

∫ u

0

2(u2 − v2)dvdu = 2

∫

1

0

2

3
u3du =

1

3
.

Set r = xi + yj then the unit vectors in the u, v directions are proportional to

∂r

∂u
= 2ui + vj,

∂r

∂v
= 2vi + uj.

If this were an orthogonal coordinate system then the dot product of these quantities would
be zero - it is n’t. This is not orthogonal.
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Figure 1: The region R for Problem 2

3. (a) Bookwork:
∫ ∫

S
(∇× A) · ndS =

∮

C
A · dr

where C is the boundary of S orientated in a positive sense.

Unseen: The integral is
∮

C
A · dr

where C is the circular path in the xy plane, origin at (0,0) and radius 3 in (i) and 1 in (ii).
So do both simultaneously

x = R cos θ, y = R sin θ
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for 0 ≤ θ ≤ 2π. The integral is then

∫

2π

0

−[4R2 cos2 θ + R sin θ− 3]R sin θ + R cos θ[5R2 cos θ sin θ]dθ = −
∫

2π

0

R2 sin2 θdθ = −R2π

so result for (i) is −9π and for (ii) is −π.

(b) Bookwork
∫ ∫

S
A · ndS =

∫ ∫ ∫

V
∇ ·AdV

where S is the surface enclosing the volume V .

Unseen: The integral is

∫ ∫ ∫

V
∇ ·AdV =

∫ ∫ ∫

V
(8 + 2y)dV = 1 × 1 ×

∫

1

0

(8 + 2y)dy = 9
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