M2AA2 - Multivariable Calculus. Problem Sheet 1 Solutions
Professor D.T. Papageorgiou, January 2009.

1. (l) A-r=Aix1+ Asxy + Asxs, hence V(A . 'I‘) = (Al, Ao, Ag) = A.
(ii) ™ = |r|* = (2% + y? + 2%)™2. First component of V(r") is
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Similarly for the other components, therefore

(iii) »-V(z+y+z) = x+y+z, therefore, V(r-V(z+y+2)) = (1,1,1).
2. (a) Consider the first component, i.e.
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with similar results for the y and z components. Hence the result
follows.

b) Consider the first component: o) f'(r)EL. Putting all com-
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ponents together gives V(f(r)) f/f,r) (T1,.. ., my) = @r.

(c) Noting that V2f(r) =V -Vf(r)=V- (@r) we obtain
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(d) The equation can be written as rnl,l(r”_lf’)/ = 0, which can
be integrated twice to yield f(r) = % + B where A and B are
constants. When n = 2 a solution to Laplace’s equation is f(r) =
/(2 + ).

3. The required derivative is p - (V)(1,1,2) where p = (1,2,3)/V14 is a
unit vector in the direction (1,2,3). Calculating gives (1,2,3)/v14 -
(6,1,4) = 20//14.



4. Let the zero level sets of the functions ¢1 = 22 + 2y> — 2? — 8 and
¢o = x2 + 3% + 2% — 6 represent the two surfaces. The normals to
the surfaces at P(1,2,1) are nj o = V¢172](1’271), ie. n; = (2,8,-2),
Ny = (2, 4, 2).

The tangent to surface 1 at P is (r —rg) - n; = 0 where ro = (1,2, 1).
Hence the equation is
r+4y —z=8.

The required angle (call it 0) is the angle between the normals; n;-ng =
|ny||nz|cosd. Hence § = cos™'(4/3v/3).

5. Let ¢ = 3z%ysin(rz/2) — 2 and hence
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Vo = (6953/ sin(rz/2) + o cos(mz/2), 3x%sin(mz/2), —1)

is normal to the surface at any point. In particular n = (6,3, —1) is a
vector normal to the surface at (1,1,3). The equation of the tangent
is [(x,y,2)—(1,1,3)]-(6,3,—1) = 0, i.e. 62+3y—z = 6 is the required
equation.

The marble will roll in the direction of mazimum decrease of ¢(z,y, z) =
0. This is the direction u = —V¢/|V¢| and when this is evaluated at
r =1,y =1/2 we find u = —(3,3,—1)//10. Hence the direction of
descent is southwest.

6. Let F} be the focus at (—ae, 0) and F; that at (ae, 0) and take P(x,y)
to be any point on the ellipse. Note also the vectors Fll_j) = (z+ae,y)

and FoP = (z — ae,y), and the normal to the surface at P which is
given by n = (222 /a?,2y/b?). We can now find the angle between Fy p

and n to be )
. (i—é’(ijae) + %)
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After some algebra and using the fact b*> = a?(e? — 1), this angle can
be shown to be
cos ! ( 2 )
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Now repeat for the angle between the vector Fy P and n and show that
it gives the same result, hence the answer.

Also, F, P + F» P = 2a which is independent of x and y.




Physical interpretation. This example shows that if you shine a ray of
light from one focus of an ellipse it will bounce off the elliptical wall
and get reflected to the other focus. The physical interpretation is that
when a ray of light hits a surface it is reflected from the surface along
a line that subtends the same angle with the tangent to the surface as
did the original ray.

7. (i) Vo =r® Vo +2Vr? =1%(1,0,0) + 2z7r.
(i) V- (zr?r) = 2r’V -7 + 7 - Vaor? = 6zr2.
(iii) Consider first component of V x (f(r)r). This is
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Similarly for the other components, therefore the answer is 0.
8. (i) V-(uxwv)=V-(0,-2%2%) = 2yz, and V x u = (0,2z,0),
V x v =(0,0,0). Hence RHS is equal to LHS.
(i) Yu = (2222 + y?2%2 + 2*,0,0), Vo = (22, 2y,22), so LHS = 222>
and the RHS = (2x,2y,22) - (22,0,0) = 2222,
9. Since z = wv and y = 1/v, we have v = zy and v = 1/y. Hence the
chain rule gives
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Now we can calculate (subscripts will be used to denote partial deriva-

tives, e.g. fr = % etc.):

1 1/1 1
f:r::*Fua fa:x:* <Fu> :72Fuu’ fy:quu_UQFv (1)
v v\v "), v
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Jfyy = <uvau —v 811) (quu —v Fv>

= u2v2Fuu — 2uv3FwJ + 2v3Fv + v4Fm,



10.

foy = % (quu — U2Fv)u = % (vFu + uvFyy, — UZFW)

Now substitute all these expressions into the equation and eliminate
x,y in favour of u, v to get

V’Fp=0 = F,=0.
The general solution is

F(u,v) =a(uw)v+ pBu) = f(z,y) = a(:;y) + B(zy),

where a(-) and () are arbitrary functions of integration that can be
fixed once boundary conditions are provided.
Use the chain rule on g(x,y,t) = f(«t, yt) to find
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5 = fa(xt, yt)a(xt) + fy(xt, yt)a(yt) = zfo(xt, yt) + yfy(xt, yt),

as required.

Now if f(xt,yt) = t" f(z,y), we can differentiate this w.r.t ¢ and use
the result above for the LHS, i.e.

z fo(wt, yt) + yfy(wt,yt) = nt" " f(z,y).
Now put ¢ = 1 to obtain the result.
To obtain the last part, differentiate g; with respect to ¢t again to get

g = x(fu(zt,yt)) +y(fy(zt,yt))s
= z[xfoa(t, yt) + yfoy(@t, yt)] + y [ foy (xt, yt) + yFyy(xt, yt)]

Also (t"f(x,y)),;, = n(n — 1)t" 2 f(z,y), and so equating these and
setting ¢ = 1 gives us what we want.

Note: This can be done for functions f : R¥ — R also, in a nice
compact form. Denote the function f(x) where x = (z1,...,x;), and
define g(x,t) = f(xt).

Differentiating w.r.t. ¢t we get
Gt = X1 fo, (xt) + ...+ 2 fa, () = @ - V f(21).

It follows immediately by setting ¢ = 1 as before that for a homoge-
neous function f(xt) = t" f(x) we have the compact formula

z-Vf(x) = (n—-1)f(2),
and higher derivatives can be taken to get higher order identities also
as done by you in R2.



