
M2AA2 - Multivariable Calculus. Problem Sheet 2. Solutions.
February 16, 2009. Prof. D.T. Papageorgiou

1. Consider the first component ∂
∂y (2xz+ y2)− ∂

∂z (2yz+x2) = 2y− 2y = 0; similar calculations
give 0 for the other two components.

If v = ∇φ then ∂φ
∂x = 2xy + z2; integrate to get φ(x, y, z) = x2y + xz2 + f(y, z) with f to be

found. Same procedure integrating φy and φz to finally arrive at φ = x2y + xz2 + y2z + A
with A a constant. Since φ(0) = 0, this gives A = 0.

2. Functions are harmonic, therefore ∇2φ = ∇2ψ = 0; level surfaces are orthogonal, therefore
∇φ · ∇ψ = 0. Compute

∇2(φψ) = ∇ · (∇(φψ)) = ∇ · (φ∇ψ + ψ∇φ)

= φ∇2ψ + ∇φ · ∇ψ + ψ∇2φ+ ∇φ · ∇ψ = 0

3. Parametrise the straight line: x = t, y = 2t, z = 3t, 0 ≤ t ≤ 1. Then

I =

∫ 1

0
(2trdt + 6t22dt+ 3t23dt) = 23

∫ 1

0
t2dt = 23/3.

4. (a) For the straight line parametrise (x, y, z) = (2t, t, 3t), 0 ≤ t ≤ 1, hence

IP1
=

∫ 1

0

(

12t22dt+ (12t2 − t)dt+ 9tdt
)

= 16.

(b) Substitute the given parametrisation to find

IP2
=

∫ 1

0

(

12t24tdt + [4t2(4t2 − t) − t]dt + (4t2 − t)(8t− 1)
)

dt =
71

5
.

(c) Similarly

IP3
=

∫ 2

0

(

3s2ds+ (
3

4s2
−
s2

4
)
s

2
ds+

3s2

8

9s2

8
ds

)

= 16.

5.
∇× F = (−x+ x,−y + y,−z + z) = 0.

Now, φx = 2x− yz, φy = −xz, φz = 2z − xy; integrating we find

φ = x2 − xyz + z2 +A,

where A is an arbitrary constant. The integral is independent of the path and hence

I = [φ]
(2,1,3)
(0,0,0) = 9 − 6 + 1 = 4.
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6. (a) On C1 we parametrise by x = cos t, y = sin t, 0 ≤ t ≤ π/2. It follows that
∫

C1
(F1dx +

F2dy) =
∫ π/2
0 (1)dt = π

2 . On C2 we have a straight line joining (0, 1) with (1, 0); the
equation of the line is y = −x + 1 so we can parametrise by x = t, y = 1 − t with
0 ≤ t ≤ 1. The integral becomes

∫ 1

0

(

−
1 − t

t2 + (1 − t)2
dt +

t

t2 + (1 − t)2
(−dt)

)

= −

∫ 1

0

dt

2t2 − 2t+ 1

= −
1

2

∫ 1

0

dt

(t− 1/2)2 + 1/4
= −

[

tan−1 (t− 1/2)

(1/2)

]1

0

= −(tan−1(1) − tan−1(−1)) = −
π

2

Hence the sum
∫

C1+C2
. . . = 0.

(b) C1 is parametrised as above BUT 0 ≤ t ≤ −3π/2. The integrand is identical to what we

had above, hence
∫

C1
. . . =

∫

−3π/2
0 (1)dt = −3π/2. The integral along C2 is the same as

above. Adding we get
∫

C1+C2
. . . = −2π.

(c) C is parametrised by x = cos t, y = sin t with 0 ≤ t ≤ 2π (not told direction so assume
positive). Hence the answer is

∫

C . . . = 2π, i.e. negative that found in part (b).

F1y = F2x as long as (x, y) 6= 0. Hence any closed curve not containing the origin will give an
integral of zero as found in part (a), any closed curve that is negatively oriented will give an
answer of −2π as found in part (b), and any closed positively oriented curve will give +2π as
found in part (c).

7. Calculate the area integral explicitly:

∫ b

0

∫ a

0
(2x2 − a)dx1dx2 =

∫ b

0
a(2x2 − a)dx2 = ab(b− a).

Now calculate the path integral (anti-clockwise, +ve sense) Let P1 be the path from (0, 0)
to (a, 0); P2 from (a, 0) to (a, b); P3 from (a, b) to (0, b); P4 from (0, b) to (0, 0). Calculate
∮

P F1 dx1 + F2 dx2 along each path:

• Along P1: Parametrise by x1 = t, x2 = 0 with 0 ≤ t ≤ a. On this path F = 0, hence
∫

P1
. . . = 0.

• Along P2: Parametrise by x1 = a, x2 = t with 0 ≤ t ≤ b. Hence F = (at, 2at) and
∫

P2
. . . =

∫ b
0 2atdt = ab2.

• Along P3: Parametrise by x1 = a−t, x2 = b with 0 ≤ t ≤ a since the path starts at (a, b)
and decreases to the left to (0, b). Here F1 = ab, F2 = 2(a − t)b, dx1 = −dt, dx2 = 0,
hence

∫

P3
. . . =

∫ a
0 ab(−dt) = −a2b.

Alternatively, we observe that
∫ (0,b)
(a,b) = −

∫ (a,b)
(0,b) and can parametrise the path using

x1 = u, x2 = b with 0 ≤ u ≤ a. This leaves
∫

P3
. . . = −

∫ a
0 abdu = −a2b as before.

• Along P4: Parametrise by x1 = 0, x2 = b − t, 0 ≤ t ≤ b. Hence F = (a(b − t), 0)
and dx1 = 0, dx2 = −adt. But since F2 = 0 on P4 we get

∫

P4
. . . = 0. (Can use the

alternative
∫ (0,0)
(0,b) = −

∫ (0,b)
(0,0) to arrive at the same conclusion.)

Now add these contributions to find
∫

P1+P2+P3+P4
(F1dx1 +F2dx2) = ab(b−a) hence verifying

Green’s theorem in the plane.

2



8. Take F = 1
2 (−x2, x1) and apply Green’s theorem to find

Area =

∫ ∫

S
dx1dx2 =

1

2

∮

C
(x1dx2 − x2dx1).

Let P1 be the path along the cycloid and P2 that along the x1-axis. See Figure 1 for a sketch
of the paths and note that they are in the clockwise, i.e. negative, direction. Along P2 the
parametrisation is x1(t) = a(t− sin t), x2(t) = a(1 − cos t), 0 ≤ t ≤ 2π. Hence,

1

2

∫

P1

(. . .) =

∫ 2π

0
[a(t− sin t)a sin t− a(1 − cos t)a(1 − cos t)] dt

=
a2

2

∫ 2π

0
[t sin t− 2 + 2 cos t] dt

=
a2

2
[−t cos t+ 3 sin t− 2t]2π

0

= −3πa2.

Along P2 we have x2 = 0, hence
∫

P2
. . . = 0. Hence the area is 3πa2, the plus sign being

necessary because we have to change the direction of the contour.
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Figure 1: The contour used in problem 8.

The figure was produced using Matlab with the commands:

>> t=[0:2*pi/100:2*pi];

>> plot(t-sin(t),1-cos(t))

>> axis([-1 7 -.5 3])

>> grid
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