Zh{s

Covm\'pel'{}-;\;ef Species. ({;uol Lu,&m{

{-4\? P l’;_,P-.,.,ML- oﬂ ,s[)e_d-cx)

MDM M}/L\ew" ‘Q‘,LP\‘(';\ garmwlq,s (C{u&\;"&r}{\l‘c }‘}

A M

= %) X

0L+ i W\oM

o\ M /U '(uwh\ r‘a}\M

A Lok AD

"'\DQP\». U wanla % ZRro Mvacuwr geo

éy\\i) huuo;!-\w\'. —i H( % G/L =0 7‘5:@ j "\""‘-”CLL‘-M

e i wu%\w i R

Ao ©

(1) Cmpg).«_ .C‘y Sawe CSaurce s }f b ;n(,re_a_b(a h’u- ] otecream
Y “ M

. ?—tll <o ’ .-a—-,:J (o
D(j DX
{ 'L} he rQJ. lc-r-}& ‘? OP""\ c.L-i‘nm (QmCrgbﬂlﬂ;&j ‘D&A ﬁer a.“ )

3 | ' Sc\n N(,L.J\ T Gad N(x.3?<o ﬂr 2K or a 2 &

;3} \ @"D.i-cuu 0’{ 2w Specien J\M t.sl species ﬁmjﬁ:bn ltlﬁ,
ke b ok decense ebeve .

3'01.1:">o sd. H (/(,o)>o ;:f X < and H(&!;o)(ﬂ ;'[ X>a
C!\ﬁ:'ﬁj Jj 3, x.__:)o.,)
W(’O,ﬂ > 6 ;1 B S b gud N(wj}:(o;lf é;_é

(L,“\ a,&}p!,{/ a -}é/
(H’tt'j 2] }L'- mod A F- L/‘l&l Cow e c,on,c,\hoLL?
PlR————

Rl P‘PM lodions feus a Mpv}bécof) stadle
egl:: 1']Dfrb-u. on Zé -2 CD, (hJH !).:, u,\.?w_ Lwl— reed ne
LL C bi _slabit 1«.1} o

o



L1
From e aa:,xwu-yrkw (‘) i '1 Qﬁ:”ow Cn‘/’-)' J’LJ- hu“C»“"*—
Adernined ‘03 H(x*é\ =0 15 a (_9{‘3'001' over K e lac.g e

_g)m. 9;8&«) X e [‘ﬁ, a )

sappee Mlal)so He 2N (40 co (onpadonlan #ol)

TET 2

f 2V B o b D Lol & e &
H(,c,Lt,_,,)):,o . blar.b)

mb Lhud Ctocdla) W}u\m Ow b v\,u,nc,lﬂ;.(, -) W a_gra‘:\’\ .
S:\‘n'u[&r"v ; Snie §_u<¢ pb, l'bﬁ-tn. h—w\ N:-o %) o CSrq_pl\

0% over ~a,

= Cot) & an ammpl shible
. Qﬂ P"- l,.,‘:}\-. LO..S\-*- cf!




1.*1’

LJL‘WJ ]’\‘tﬂzw‘ :} },L\. hu“c,l:\ua Moo md Wes '{\.l-oru_pl )
=) elrujl:\ori‘a»{ ] C,Llnf},( Moo Joro @Lsamlwilg ).

Db hid d s s.*lmp‘.f,fa]ma @um:
Ghe choﬁa.’a, ot eﬁu.l[llomi Canme! have Comnp 2 u‘j;«wl'ws).
¥ %s L0 qeomehic &3 3umpHions (bl T do nod
bediecled X et RS chap U )

% obur ay be [Lwﬂ ,(gs vecdor beld
\\
@ ()( Nx b 4 gxnl} > M ke "9—;( Kx"‘j
i I
DN)( SH} m& 7 ';23 (*“‘J?

(e call H‘é <o ) M,( g e ﬁ

= caledebe (Te A TN S S YY) -agNJ -H;cg NN }
> o
T P NP P P | s RN PP
(chap v H55) cor

=) é’x{u nq Ote 4 Smc{c“.w (4\) sdable and 4D MM\A_
Ww?é—o\il

o adbortyes (N.a read  eved )
.;preff,\\(.r\ C Po$ ‘. F )



| L3 o

Lalye folluws Jnud r@{jn’;” ebusin e ety hue SMi

£ inComiyg How o Bowndary

# onbgay flov m fe bundan
o owe ph b a regie whoe flow s “incoms =

bowndun ma:-s_ ol ¢ NV[:W'& el

2

i o] e tpdieil S sl ek ak q,mwd: NP
cf} e PR hocen (gknuu encirele eq. ,welh Pussﬂak
bocomoe 4 shble and wakble manfdts ) eqillm ).

SOM o AULW'(L‘J aw-..ﬂl/b‘!\:\ =) aul Ml ‘J'Uut’ Q)Umr SJ"EJLAL
@%L&“\i]orin-. |



Figure 11.8 The phase portrait
when p and v do not meet.

The nullclines & and v and the coordinate axes bound a finite number of
connected open sets in the upper-right quadrant: These are the basic regions
where x’ # 0 and y’ # 0. They are of four types:

Az & 20,950, Bi x" <0y =
C: ¥ <0,¥<0, Dy «£>0,9<0

Equivalently, these are the regions where the vector field points northeast,
northwest, southwest, or southeast, respectively. Some of these regions are
indicated in Figure 11.9. The boundary 3R of a basic region R is made up of
points of the following types: points of y N v, called vertices; points on p or v
but not on both nor on the coordinate axes, called ordinary boundary points;
and points on the axes.

A vertex is an equilibrium; the other equilibria lie on the axes at (0, 0), (4, 0),
and (0, b). At an ordinary boundary point Z € 3R, the vector field is either
vertical (if Z € u) or horizontal (if Z € v). This vector points either into or out
of R since u has no vertical tangents and v has no horizontal tangents. We call
Z an inward or outward point of 9R, accordingly. Note that, in Figure 11.9,
the vector field either points inward at all ordinary points on the boundary of
a basic region, or else it points outward at all such points. This is no accident,
for we have:

Proposition. Let R be a basic region for the competitive species model. Then
the ordinary boundary points of R are either all inward or all outward.

Proof: There are only two ways in which the curves p and v can intersect at
a vertex P. As y increases along v, the curve v may either pass from below

Figure 11.9 The basic regions
when the nullclines p and v
intersect.

to above i, or from above to below p. These two scenarios are illustrated in
Figures 11.10a and b. There are no other possibilities since we have assumed
that these curves cross transversely.

Since ¥ > 0 below 1 and x’ < 0 above p, and since y’ > 0 to the left of v
and ¥ <0 to the right, we therefore have the following configurations for the
vector field in these two cases. See Figure 11.11.

In each case we see that the vector field points inward in two opposite basic
regions abutting P, and outward in the other two basic regions.

If we now move along u or v to the next vertex along this curve, we see that
adjacent basic regions must maintain their inward or outward configuration.
Therefore, at all ordinary boundary points on each basic region, the vector
field either points outward or points inward, as required. ]

I n

v

(a) (b)

Figure 11.10 In (a), v passes from below u to above p as y
increases. The situation is reversed in (b).



Figure 11.14 Note that solutions on either side of
the point Zin the stable curve of Q have very
different fates.

For example, this analysis tells us that, in Figure 11.14, only P and (0, b) are
asymptotically stable; all other equilibria are unstable. In particular, assuming
that the equilibrium Q in Figure 11.14 is hyperbolic, then it must be a saddle
because certain nearby solutions tend toward it, while others tend away. The
point Z lies on one branch of the stable curve through Q. All points in the
region denoted By to the left of Z tend to the equilibrium at (0, b), while
points to the right go to P. Thus as we move across the branch of the stable
curve containing Z, the limiting behavior of solutions changes radically. Since
solutions just to the right of Z tend to the equilibrium point P, it follows that
the populations in this case tend to stabilize. On the other hand, just to the
left of Z, solutions tend to an equilibrium point where x = 0. Thus in this
case, one of the species becomes extinct. A small change in initial conditions
has led to a dramatic change in the fate of populations. Ecologically, this small
change could have been caused by the introduction of a new pesticide, the
importation of additional members of one of the species, a forest fire, or the
like. Mathematically, this event is a jump from the basin of P to that of (0, b).

11.4 Exploration: Competition and
Harvesting

In this exploration we will investigate the competitive species model where we
allow either harvesting (emigration) or immigration of one of the species. We

consider the system
¥ =x(1—ax—y)

Y =y(b—x—y)+h

Here a, b, and h are parameters. We assume that a, b > 0. If h <0, then we are
harvesting species y at a constant rate, whereas if h > 0, we add to the popula-
tion y at a constant rate. The goal is to understand this system completely for
all possible values of these parameters. As usual, we only consider the regime
where x, y > 0.If y(t) < 0 for any t > 0, then we consider this species to have
become extinct.

1. First assume that h = 0. Give a complete synopsis of the behavior of this
system by plotting the different behaviors you find in the a, b parameter
plane.

2. Identify the points or curves in the ab—plane where bifurcations occur
when h = 0 and describe them.

3. Now let h < 0. Describe the ab—parameter plane for various (fixed)
h-values.

4. Repeat the previous exploration for k > 0.

5. Describe the full three-dimensional parameter space using pictures, flip
books, 3D models, movies, or whatever you find most appropriate.

EXERCISES

1. For the SIRS model, prove that all solutions in the triangular region A
tend to the equilibrium point (z,0) when the total population does not
exceed the threshold level for the disease.

2. Sketch the phase plane for the following variant of the predator/prey
system:

X =x(1—x)—xy
Y
'=y(l-=).
Y =¥ A m
3. A modification of the predator/prey equations is given by

axy
x+1

xX'=x(1—-x)—
Y =y(l-y)

where a > 0 is a parameter.
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We obtain L = 0 provided
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Since x and y are independent variables, this is possible if and only if
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Setting the constant equal to 1, we obtain
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Integrating, we find

F(x) = dx — clog x,
G(y) = by — alog y.

Thus the function
(o] _.P i
Ra.&“m&lnmomx+ by —alogy *,?P .

is constant on solution curves of the system when x, y > 0.

By considering the signs of 9L/8x and 9L/dy it is easy to see that the equilib-
rium point Z = (¢/d, a/b) is an absolute minimum for L. It follows that I [or,
more precisely, L — L(Z)] is a Liapunov function for the system. Therefore Z
is a stable equilibrium.

We note next that there are no limit cycles; this follows from Corollary 6
in Section 10.6 because L is not constant on any open set. We now prove the
following theorem.

Theorem. Every solution of the predator/prey system is a closed orbit (except
the equilibrium point Z and the coordinate axes).

Proof: Consider the solution through W s Z, where W does not lie on the
x- or y-axis. This solution spirals around Z, crossing each nullcline infinitely
often. Thus there is a doubly infinite sequence --- < t_; < th<h <-

such that ¢,, (W) is on the line x = ¢/d, and #, — 400 as n — o0, If
W is not on a closed orbit, the points ¢+, (W) are monotone along the line
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Figure 11.5 The nullclines and
phase portrait for the
predator/prey system.

x = c/d, as discussed in the previous chapter. Since there are no __.H:.: Qn_am.
either ¢,(W) — Z asn — oo or 1, (W) — N as n — —o0. Since L is
constant along the solution through W, this implies that L(W) = L(Z). But
this contradicts minimality of L(Z). This completes the proof. @]

The phase portrait for this predator/prey system is displayed E.m_mﬁm 11.5.
We conclude that, for any given initial populations (x(0), y(0)) with RAS. #0
and y(0) # 0, other than Z, the populations of predator and prey cme.umﬁ
cyclically. No matter what the populations of prey and .vnmmmsq are, neither
species will die out, nor will its population grow _smmm::.n:\. . .

Now let us introduce overcrowding into the prey equation. As in the logistic
model in Chapter 1, the equations for prey, in the absence of predators, may
be written in the form

x' = ax — Ax%.
We also assume that the predator population obeys a similar equation
2
yY=-o—uny

when x = 0. Incorporating the assumptions above yields the predator/prey
equations for species with limited growth:

x' = x(a— by — Ax)
y = y(—c+ dx — py).
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Figure 11.3 The nullclines and
phase portrait in A for the SIRS
system. Here 8 =v =pu =1 and
r=2

assume that, in the absence of predators, the prey population grows at a rate
proportional to the current population. That is, as in Chapter 1, when y = 0
we have x’ = ax where a > 0. So in this case x(t) = x)exp(at). When
predators are present, we assume that the prey population decreases at a rate
proportional to the number of predator/prey encounters. As in the previous
section, one simple model for this is bxy where b > 0. So the differential
equation for the prey population is x' = ax — bxy.

For the predator population, we make more or less the opposite assump-
tions. In the absence of prey, the predator population declines at a rate
proportional to the current population. So when x = 0 we have y’ = —cy with
¢ >0, and thus y(t) = yp exp(—ct). The predator species becomes extinct in
this case. When there are prey in the environment, we assume that the predator
population increases at a rate proportional to the predator/prey meetings, or
dxy. We do not at this stage assume anything about overcrowding. Thus our
simplified predator/prey system (also called the Volterra-Lotka system) is

!

x = ax — bxy = x(a— by)

!

Yy = —o +dxy = y(—c+ dx)

where the parameters a, b, ¢, and d are all assumed to be positive. Since we are
dealing with populations, we only consider x, y > 0.

As usual, our first job is to locate the equilibrium points. These occur at the
origin and at (x, y) = (c/d, a/b). The linearized system is

o v a—by |mcn
NIA dy |n+aavk.

BHu § IGMMR IS S S g — -
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Figure 11.4 The nullclines
and direction field for the
predator/prey system.

so when x = y = 0 we have a saddle with eigenvalues a and =6 We know the
stable and unstable curves: They are the y- and x-axes, nm%wnﬂﬁ@.. .

At the other equilibrium point (¢/d, a/b), the eigenvalues are pure imaginary
+i./ac, and so we cannot conclude anything at this stage about stability of
this equilibrium point. . .

We next sketch the nullclines for this system. The x-nullclines are given by
the straight lines x = 0 and y = a/b, whereas the y-nullclines are y = 0 mu.a
x — ¢/d. The nonzero nullcline lines separate the region x, y > 0 into four basic
regions in which the vector field points as indicated in Figure H.u‘.p. ‘Ensan .m:a
solutions wind in the counterclockwise direction about the equilibrium point.

From this, we cannot determine the precise behavior of solutions: _J rm.%
could possibly spiral in toward the equilibrium point, spiral Ss._ma a limit
cycle, spiral out toward “infinity” and the coordinate axes, or else lie on ..n_o,e.&
orbits. To make this determination, we search for a Liapunov mc.:nso: L
Employing the trick of separation of variables, we look for a function of the
form

L(x,y) = F(x) + G(y).
Recall that L denotes the time derivative of L along solutions. We compute

L) = MERSQQ:
iF ,  dG

||I||H‘_+.|.

dx dy’’
Hence

dF dG
[ = k(g = —(—c + dx).
Ex,élf (a Svi\&x ¢+ dx)



