
Practical matters 1. Introduction 2. Linear autonomous ODEs 3. Contractions Existence and uniqueness

We consider the autonomous ODE

dx
dt

= f (x), x ∈ Rm. (14)

We are interested in solving the initial value problem to find x(t)
satisfying (14) x(t0) = x0. We note that since (14) is
autonomous a solution to this problem implies the existence of
a solution for the initial value problem x(τ) = x0 where τ 6= t0.
In the case that the vector field f is linear, we have seen in
Chapter 2that the initial value problem has a unique solution.
The aim of this chapter is to prove the existence of unique
solutions also in the case that f is nonlinear. We will set up the
problem in such a way that we obtain the solution by an
application of the Contraction Mapping Theorem that was
discussed in the previous Chapter .



Practical matters 1. Introduction 2. Linear autonomous ODEs 3. Contractions Existence and uniqueness

Picard iteration

The first step we undertake is to reformulate (14) as an integral
equation. By formally integrating (14) we obtain

x(t) = x0 +

∫ t

t0
f (x(s))ds, (15)

where the integration constant is chosen such that x(t0) = x0.
This does not yield an explicit solution, since both the left- and
right-hand-side contains a reference to the solution x(t) . It
follows that with initial value x(t0) = x0, x(t) is a solution of (14)
if and only if x(t) is a solution of (15): by differentiating (15) it is
immediate that (15) implies (14), the implication in the opposite
direction follows by the fact that we used the choice of constant
(the only freedom available in integrating (14)) to satisfy the
initial value condition x(t0) = x0.
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Picard iteration

We consider (15) as the basis of the definition of an operator T
on functions u from a closed time interval [t0 − a, t0 + a] to Rm

that satisfy u(0) = x0:

T (u(t)) = x0 +

∫ t

t0
f (u(s))ds. (16)

We observe that solutions of the initial value problem (14) with
x(t0) = x0 correspond to fixed points of the operator T : if
T (x(t)) = x(t) then (15) is satisfied, which in turn implies that
x(t) is a solution of (14) with initial value x(t0) = x0. The
strategy is to show that when we consider T as defined on a
suitable complete metric space, T is a contraction. Then we
find a unique fixed point for T , that corresponds to the unique
solution of the initial value problem of the ODE.
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Picard iteration

Before exploring this idea in more detail, let us verify first that
this approach may make sense by trying to solve some simple
initial value problems for ODEs using iteration of T . This
process is known as Picard iteration. Consider

dx
dt

= rx with x ∈ R and initial value x(0) = x0.

We denote the iteration as

uj+1(t) = T (uj(t)) = x0 + r
∫ t

t0
uj(s)ds. (17)

We are interested in limn→∞ un(t). As initial condition for the
iteration process we choose the constant function u0(t) = x0
(which is the simples example of a function u0 that satisfies
u0(0) = x0). Then
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Picard iteration

u1(t) = T (u0(t)) = x0 + r
∫ t

0
x0ds = x0(1 + rt),

u2(t) = T (u1(t)) = x0 + r
∫ t

0
x0(1 + rs)ds = x0(1 + rt +

1
2

(rt)2),

u3(t) = T (u2(t)) = x0(1 + rt +
1
2

(rt)2 +
1
3!

(rt)3),

un(t) = x0

n∑
j=0

(rt)j

j!
,

so that limn→∞ un(t) = x0ert which is indeed the unique solution
to the initial value problem for this ODE.
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Picard iteration

Let us try the iteration also with another initial function u0, for instance
u0 = x0 + t . Then

u1(t) = T (u0(t)) = x0 + r
∫ t

0
(x0 + s)ds = x0(1 + rt) +

1
2

t2,

u2(t) = T (u1(t)) = x0 + r
∫ t

0
(x0(1 + rs) +

1
2

s2)ds

= x0(1 + rt +
1
2

(rt)2) +
1
3!

t3,

u3(t) = T (u2(t)) = x0(1 + rt +
1
2

(rt)2 +
1
3!

(rt)3) +
1
4!

t4,

un(t) = x0

 n∑
j=0

(rt)j

j!

+
1

(n + 1)!
tn+1,

so that we find that un(t) is equal to the nth order Taylor expansion of
the solution plus an additional term 1

(n+1)! t
n+1. Fortunately, when

considering any fixed value of t , this term tends to zero as n tends to
infinity, so that indeed we obtain as desired limn→∞ un(t) = x0ert .
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Picard iteration

Consider the linear ODE( dx
dt
dy
dt

)
=

(
0 1
−1 0

)(
x
y

)
, with initial condition

(
x(0)
y(0)

)
=

(
1
0

)
.

We perform Picard iteration with u0(t) =

(
1
0

)
:

u1(t) = T (u0(t)) =

(
1
0

)
+

∫ t

0

(
0 1
−1 0

)(
1
0

)
ds =

(
1
−t

)
,

u2(t) = T (u1(t)) =

(
1
0

)
+

∫ t

0

(
−s
−1

)
ds =

(
1− t2

2
−t

)
,

u3(t) = T (u2(t)) =

(
1
0

)
+

∫ t

0

(
−s

−1 + s2

2

)
ds =

(
1− t2

2
−t + t3

3!

)
,

un(t) =

(
nth order taylor expansion of cos(t) at t = 0
nth order taylor expansion of − sin(t) at t = 0

)
.

And indeed the solution is(
x(t)
y(t)

)
=

(
cos(t)
− sin(t)

)
.
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Picard iteration

The idea is to find a complete metric space (which is a function
space) on which T is a contraction, and thus yielding a unique
fixed point that corresponds to the unique solution of the initial
value problem for the ODE.
In order to appreciate the choice of function space that we will
use in a few moments, let us first explore some examples of
initial value problems for ODEs where existence and
uniqueness of solutions does not hold.
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Picard iteration

Example
Let

dx
dt

=

{
1 if x < 0
−1 if x ≥ 0

with x ∈ R. Consider the initial value problem of this ODE with
discontinuous vector field, and initial value x(0) = 0. Since
dx
dt = −1, we observe that x is decreasing but the solution
cannot be decreasing since as soon as x < 0 we have dx

dt > 0
so that it must be increasing. Hence there does not exists a
solution with initial value x(0) = 0 for this ODE. We note that
the property of the vector field that appears to create this
problem is the fact that the vector field is discontinous at x = 0.
So we will not try to prove existence and uniqueness for
discontinuous vector fields.
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Picard iteration

Example
Consider

dx
dt

= 3x2/3, with x ∈ R

and initial value x(0) = 0. One (immediately obvious) solution
is x(t) = 0 for all t . But one readily verifies that there also exists
another solution: x(t) = t3, since dx(t)

dt = 3t2 = 2(t3)2/3. So we
here have existence, but not uniqueness of solutions. We
observe that although the vector field if continuous, it is not
differentiable (as the derivative blows up at x = 0) and even not
Lipschitz. We will later on insist on the fact that the vector field
is Lipschitz (which is a slightly weaker property than continuous
differentiability).
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Picard iteration

Example
Our final example here will illustrate that even if we have
existence and uniqueness of solutions for a given initial value
problem of an ODE, such solutions may well not exist for all
time. For instance, consider the ODE

dx
dt

= 1 + x2, with x ∈ R.

Then we can integrate this ODE by means of separation of
variables:∫

dx
1 + x2 =

∫
dt ⇔ tan−1(x) = t + c ⇔ x(t) = tan(c + t).

Hence, despite the fact that for any initial value problem we can
find a unique solution, we cannot avoid this solution to blow up
to ±∞ in finite time (when t + c = π/2 mod π).
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We will now prove a theorem about existence and uniqueness
of solutions of intial value problems for ODEs that is known as
the "Picard-Lindelöf Theorem". We do not present the most
general (or strongest) version of this theorem, but a version that
admits a straightforward proof using the Contraction Mapping
Theorem.
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Motivated by the examples of the last Section, we consider
solutions that are continuous functions from a finite
time-interval J to a bounded subset U ⊂ Rm (as we want to
avoid solutions to blow up). With initial value x(t0) = x0, we will
set J = [t0 − a, t0 + a] and U = B(x0,b) (the closed ball in Rm

around x0 with radius b). We let C0(J,U) denote the set of
continuous functions from J to U. It turns out that
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Proposition

C0(J,U) is a complete metric space with respect to the metric
induced by the supremum norm

d(u, v) = ||u − v ||0 := sup
t∈J
|u(t)− v(t)|, (18)

where | · | denotes the Euclidean norm in Rm: |x | =
√∑m

i=1 x2
i

where x = (x1, . . . , xm).

Proof.

It is readily verified that for any Cauchy sequence uj ∈ C0(J,U)
it follows that uj(t) ∈ Rm is a Cauchy sequence in Rm for all
t ∈ J. Hence, since Rm is complete it follows that C0(J,U) is
complete as well.
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Picard iteration

The main theorem about existence and uniqueness of solutions
follows from the fact that under some mild condition on the
time-interval J, the map T defined in (16) which is at the basis
of the Picard iteration is a contraction on this metric space.

Theorem (Picard-Lindelöf)

Consider the ODE

dx
dt

= f (x), x ∈ Rm,

with initial value problem x(t0) = x0. Let U = B(x0,b) and
J = [t0 − a, t0 + a], where f : U → Rm is Lipschitz with Lipschitz
constant K , and |f (x)| ≤ M for all x ∈ U, then the initial value
problem has a unique solution x ∈ C0(J,U) as long as the
time-interval is chosen with a satisfying
0 < a < min(1/K ,b/M).
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Proof of Picard-Lindelöf

The aim is to show that with 0 < a < min(1/K ,b/M) the map T
defined as

T (u(t)) = x0 +

∫ t

t0
f (u(s))ds.

is a contraction on the metric space C0(J,U) with metric

d(u, v) = ||u − v ||0 := sup
t∈J
|u(t)− v(t)|.

Existence and uniqueness then follows directly by application of
the Contraction Mapping Theorem.
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Proof of Picard-Lindelöf

First we note that f is continuous because f is Lipschitz.
Then f takes a maximum and minimum on U since U is
compact (closed and bounded), and hence a finite bound
M exists.
In order to make sure that T maps C0(J,U) into itself we
must make sure that a is small enough to guarantee that
T (u(t)) ∈ U for all t ∈ J. We use the bound M to obtain
with t ∈ J = [t0 − a, t0 + a] that

|T (u(t))− x0| =

∣∣∣∣∫ t

t0
f (u(s))ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

t0
|f (u(s))|ds

∣∣∣∣ ≤ Ma

from which it follows that if a < b/M we have
T (u(t)) ∈ B(x0,b) for all t ∈ J.
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Proof of Picard-Lindelöf

It remains to be shown that T is a contraction on C0(J,U).
Consider two elements u, v ∈ C0(J,U). Then

|T (u(t))− T (v(t))| =

∣∣∣∣∫ t

t0
f (u(s))− f (v(s))ds

∣∣∣∣
≤

∣∣∣∣∫ t

t0
|f (u(s))− f (v(s))|ds

∣∣∣∣
≤ K

∣∣∣∣∫ t

t0
|u(s)− v(s)|ds

∣∣∣∣ ≤ aKd(u, v).

Hence, if aK < 1 the map T is a contraction on C0(J,U).



Practical matters 1. Introduction 2. Linear autonomous ODEs 3. Contractions Existence and uniqueness

Proof of Picard-Lindelöf

The P-L theorem establishes the existence of a flow Φt , albeit
possibly only on a small time interval. One can actually
substantially improve on this result. For instance, one can show
that the flow exist for all time if f is Lipschitz on its entire domain
(such as is the case when the domain is compact and f is
continuously differentiable), but we will not go into the details of
such results here.
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Properties of the flow

It is not yet enough to know that a flow map exists, but we would
also like to establish some useful properties of the flow such as
continuity and differentiability with respect to time and initial
conditions. In the special case of flows of linear autonomous
ODEs we have already seen from the explicit solution that it is
continuous and differentiable (actually C∞) with respect to time
and initial conditions. In general, it turns out that also in the
nonlinear case the flow is well behaved: if f : Rm → Rm is Ck (k
times continuously differentiable) then so is Φt . We will only
prove a weaker statement, that provides some insight.
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Properties of the flow

Theorem (Continuity)

Let O ∈ Rm be open and suppose f : O → Rm is Lipschitz, with
Lipschitz constant K . Let y(t) and z(t) be solutions of the ODE

dx
dt

= f (x)

which remain in O and are defined for t ∈ [t0, t1]. Then for all
t ∈ [t0, t1] we have

|y(t)− z(t)| ≤ |y(t0)− z(t0)|exp(K (t − t0)).

It follows from this Theoremthat Φt is continuous (with respect
to its domain and time-variable t). Namely, it follows that
y(t)→ z(t) for all t ∈ [t0, t1] if y(t0)→ z(t0).
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Properties of the flow

The proof of this theorem involves a famous inequality.

Proposition (Gronwall’s inequality)
Let u : [0, α]→ R be continuous and non-negative. Suppose
C ≥ 0 and K ≥ 0 are such that

u(t) ≤ C +

∫ t

0
Ku(s)ds, ∀ t ∈ [0, α],

then
u(t) ≤ CeKt , ∀ t ∈ [0, α].
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Properties of the flow

Proof.
Suppose first that C > 0 and define

U(t) = C +

∫ t

0
Ku(s)ds.

Then we have U(t) ≥ u(t) and also

dU
dt

(t) = Ku(t) ⇒
dU
dt (t)
U(t)

≤ K ,

so that, using U(0) = C, we obtain

d
dt

ln U(t) ≤ K ⇒ ln U(t) ≤ ln U(0)+Kt ⇒ u(t) ≤ U(t) ≤ CeKt .

The result with C = 0 follows by taking the limit C ↓ 0.
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Properties of the flow

Proof of Continuity Theorem.

Define v(t) = |y(t)− z(t)|. We use the integral formulation of the
initial value problem (15) to obtain

y(t)− z(t) = y(t0)− z(t0) +

∫ t

t0
(f (y(s))− f (z(s)))ds

which implies that

v(t) ≤ v(t0) +

∫ t

t0
|f (y(s))− f (z(s))|ds ≤ v(t0) +

∫ t

t0
K v(s)ds.

Finally we apply Gronwall’s inequality to u(t) := v(t + t0) to obtain

u(t) = v(t+t0) ≤ v(t0)+

∫ t+t0

t0
|f (y(s))−f (z(s))|ds ≤ v(t0)+

∫ t

0
K u(s)ds

which implies

v(t + t0) = u(t) ≤ v(t0)eKt ⇒ v(t) ≤ v(t0)eK (t−t0)for all t ∈ [t0, t1].

Along the same lines one can prove differentiability of the flow to the
same degree as existing differentiability of the vector field f . We do
not further elaborate on proofs of such facts, which can be found
elsewhere.


