252 Chapter 11 Applications in Biology

Figure 11.14 Note that solutions on either side of
the point Z in the stable curve of Q have very
different fates.

For example, this analysis tells us that, in Figure 11.14, only P and (0, b) are
asymptotically stable; all other equilibria are unstable. In particular, assuming
that the equilibrium Q in Figure 11.14 is hyperbolic, then it must be a saddle
because certain nearby solutions tend toward it, while others tend away. The
point Z lies on one branch of the stable curve through Q. All points in the
region denoted By, to the left of Z tend to the equilibrium at (0, b), while
points to the right go to P. Thus as we move across the branch of the stable
curve containing Z, the limiting behavior of solutions changes radically. Since
solutions just to the right of Z tend to the equilibrium point P, it follows that
the populations in this case tend to stabilize. On the other hand, just to the
left of Z, solutions tend to an equilibrium point where x = 0. Thus in this
case, one of the species becomes extinct. A small change in initial conditions
has led to a dramatic change in the fate of populations. Ecologically, this small
change could have been caused by the introduction of a new pesticide, the
importation of additional members of one of the species, a forest fire, or the
like. Mathematically, this event is a jump from the basin of P to that of (0, b).

11.4 Exploration: Competition an
Harvesting :

In this exploration we will investigate the competitive species model where we
allow either harvesting (emigration) or immigration of one of the species. We
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consider the system

X =x(1 —ax —y)

'

y=yb—x—y)+h

Here a, b, and h are parameters. We assume that a, b > 0. If h < 0, then we are
harvesting species y at a constant rate, whereas if h > 0, we add to the popula-
tion y at a constant rate. The goal is to understand this system completely for
all possible values of these parameters. As usual, we only consider the regime
where x,y > 0. If y(1) <0 for any ¢ > 0, then we consider this species to have
become extinct.

1. First assume that h = 0. Give a complete synopsis of the behavior of this
system by plotting the different behaviors you find in the a, b parameter
plane.

2. Identify the points or curves in the ab—plane where bifurcations occur
when h = 0 and describe them.

3. Now let h < 0. Describe the ab—parameter plane for various (fixed)
h-values.

4. Repeat the previous exploration for h > 0.

5. Describe the full three-dimensional parameter space using pictures, flip
books, 3D models, movies, or whatever you find most appropriate.

EXERCISES

1. TFor the SIRS model, prove that all solutions in the triangular region A
tend to the equilibrium point (7, 0) when the total population does not
. exceed the threshold level for the disease.
@ Sketch the phase plane for the following variant of the predator/prey
system:

X =x(1—x)—xy

y=r(-2)

@ A modification of the predator/prey equations is given by

axy

!
— x(1 — =
x xC %) x+1

/

y =y(l—-y)

where @ > 0 is a parameter.
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(a) Find all equilibrium points and classify them.
(b) Sketch the nullclines and the phase portraits for different values of g,
(¢) Describe any bifurcations that occur as a varies.

4. Another modification of the predator/prey equations is given by

xy
x+b

X' =x(1—x)—
y=y(1-y)

where b > 0 is a parameter.

(a) Find all equilibrium points and classify them.

(b) Sketch the nullclines and the phase portraits for different values
of b.

(c) Describe any bifurcations that occur as b varies.
(5.) The equations

!

X =x(2—x—y)

!

¥y =y(3—-2x—y)

satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.

6. Consider the competing species model

x' =x(a—x—ay)

y =pb—bx—y)

where the parameters a and b are positive.

(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.

(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.

(c) Determine the values of a and b for which there is a bifurcation in

~ this system and describe the bifurcation that occurs.

(d) Record your findings by drawing a picture of the ab—plane and
indicating in each open region of this plane the qualitative structure
of the corresponding phase portraits.

7.
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Two species x, y are in symbiosis if an increase of either population leads
to an increase in the growth rate of the other. Thus we assume

x' = M(x,y)x
¥y = N(xy)y
with
aM aN
— >0 and — >0
ay dx

and x, y = 0. We also suppose that the total food supply is limited; hence
for some A > 0, B > 0 we have

M(x,y) <0 if x> A,

N(x,y) <0 if y>B.

If both populations are very small, they both increase; hence
M(0,0) >0 and N(0,0) >0.
Assuming that the intersections of the curves M ~'(0), N~'(0) are finite,

and that all are transverse, show the following:

(a) Every solution tends to an equilibrium in the region 0 < x < A,
0<y<B

(b) There are no sources.

(¢) There is at least one sink.

(d) IfoM/ox <0and dN/dy < 0, there is a unique sink Z, and Z is the
w-limit set for all (x, y) with x > 0, y > 0.

Give a system of differential equations for a pair of mutually destruc-
tive species. Then prove that, under plausible hypotheses, two mutually
destructive species cannot coexist in the long run.
Let y and x denote predator and prey populations. Let

x = M@ y)x

y'=N(xy)y

where M and N satisfy the following conditions.

(a) Ifthereare notenough prey, the predators decrease. Hence for some
b>0

N(x,y) <0 ifx<b.
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(b) An increase in the prey improves the predator growth rate; hence
dN/dx > 0.

(c) In the absence of predators a small prey population will increase;
hence M(0,0) > 0.

(d) Beyond a certain size, the prey population must decrease; hence
there exists A > 0 with M (x,y) <0if x > A.

(e) Anyincrease in predators decreases the rate of growth of prey; hence
aM/dy <0.

(f) The two curves M~1(0), N~1(0) intersect transversely and at onlya
finite number of points,

Show that if there is some (1, v) with M (w4, v) > 0 and N (1, v) > 0 then
there is either an asymptotically stable equilibrium or an w-limit cycle.
Moreover, show that, if the number of limit cycles is finite and positive,
one of them must have orbits spiraling toward it from both sides.
Consider the following modification of the predator/prey equations:

axy
X+c

x =x(1—-x)—

y=n(1-)

where a, b, and ¢ are positive constants. Determine the region in the
parameter space for which this system has a stable equilibrium with both
x,y # 0. Prove that, if the equilibrium point is unstable, this system has
a stable limit cycle.

Applications in
Circuit Theory

In this chapter we first present a simple but very basic example of an electrical
circuitand then derive the differential equations governing this circuit. Certain
special cases of these equations are analyzed using the techniques developed
in Chapters 8 through 10 in the next two sections; these are the classical
equations of Lienard and van der Pol. In particular, the van der Pol equation
could perhaps be regarded as one of the fundamental examples of a nonlinear
ordinary differential equation. It possesses an oscillation or periodic solution
that is a periodic attractor. Every nontrivial solution tends to this periodic
solution; no linear system has this property. Whereas asymptotically stable
equilibria sometimes imply death in a system, attracting oscillators imply life.
We give an example in Section 12.4 of a continuous transition from one such
situation to the other.

12.1 An RLC Circuit

In this section, we present our first example of an electrical circuit. This circuit
is the simple but fundamental series RLC circuit displayed in Figure 12.1. We
begin by explaining what this diagram means in mathematical terms. The
circuit has three branches, one resistor marked by R, one inductor marked by
L, and one capacitor marked by C. We think of a branch of this circuit as a
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4. Consider the following model of the chemical reaction between two substances whose
concentrations are denoted by x and y, respectively:

dx 4y
— = a—-T— —
dt 1+ 22

dy Yy
— = z(1- .
dt 1+ a2
Here a is a positive parameter. Note also that as x and y represent concentrations, we are

only interested in x,y > 0. The model serves to illustrate that chemical reactions may yield
asymptotic solutions that oscillate instead of being stationary.

(a) (i) Show that there is a unique equilibrium and that at this equilibrium the derivative
of the vector field (Jacobian) is equal to

1 —125+3a®> —20a
25 + a? 2a> —5a )’

(i) Show that the equilibrium is asymptotically stable if a < 2(1 + v61) and
asymptotically unstable if a > %(1 +/61).
[You may apply the derivative test without proof. Hint: Recall that the eigenvalues
of a 2 x 2 matrix A are given by AL = tr(A)/2 £ /(tr(A)/2)2 — det(A), where
tr(A) denotes the trace of A and det(A) its determinant.]

(b) Show that
(i) The quadrant {(z,y) | x > 0, y > 0} is positive flow-invariant.

(i)  All w-limit sets of the flow are contained in the region
By :={(z,y) |a>2>0, 1+a®>y>0}.

[Hint: consider the flow through the boundary of B, for all ¢ > a.]

(iii)  Apply the Poincaré-Bendixson Theorem to show that there exists a periodic solution
in B, ifa > %(1+\/61), and that this periodic solution must encircle the equilibrium.

(c) Suppose that the equilibrium is the unique w-limit set of the ODE when a < 2(1++/61).
What stability property would you expect for the equilibrium at a = %(1 + 1v61)?
Motivate your answer.
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