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Chapter 10 Closed Orbits and Limit Sets

Let X’ = F(X) be a planar system with no equilibrium points. Suppos

the flow ¢, generated by F preserves area (that is, if U is any ovo:ﬁmmﬂn
the area of ¢, (U) is independent of t). Show that every solution cury. X
a closed set. o
Let y be a closed orbit of a planar system. Let A be the period of y, [ et
{vu) _uw asequence of closed orbits. Suppose the period of y,, is A,,. :Hrﬂm
are points X, € y, such that X, - X ¢ ¥, prove that A, — A. (This
result can be false for higher dimensional systems. It is true, however

thatif &,, — u, then u is an integer multiple of A.) . .
Consider a system in R? having only a finite number of equilibria,

(a) w:oﬁ EE every limit set is either a closed orbit or the union of
ma:_E..;EE points and solutions ¢,(X) such that lim;—; o0 ¢ (X)
and lim,, o ¢;(X) are these equilibria.

(b) mroé by example (draw a picture) that the number of distinct
solution curves in w(X) may be infinite.

Let X be a recurrent point of a planar system, that is, there is a sequence
ty — Zoo such that

¢, (X) — X.

(a) Prove that either X is an equilibrium or X lies on a closed orbit.

(b) Show by example that there can be a recurrent point for a nonplanar
system that is not an equilibrium and does not lie on a closed orbit.

Let X" = F(X) and X’ = G(X) be planar systems, Suppose that
FX)-GX)=0
for all X € R%. If F has a closed orbit, prove that G has an equilibrium

point.
Let y be a closed orbit for a planar system, and let I/ be the bounded,

‘open region inside y. Show that y is not simultaneously the omega and

alpha limit set of points of 1. Use this fact and the Poincaré-Bendixson
theorem to prove that ¢/ contains an equilibrium that is not a saddle.

(Hint: Consider the limit sets of points on the stable and unstable curves
of saddles.)

Applications in Biology

In this chapter we make use of the techniques developed in the previous few
chapters to examine some nonlinear systems that have been used as mathe-
matical models for a variety of biological systems. In Section 11.1 we utilize

the preceding results involving nullclines and linearization to describe sev-

eral biological models involving the spread of communicable diseases. In
Section 11.2 we investigate the simplest types of equations that model a preda-
tor/prey ecology. A more sophisticated approach is used in Section 11.3 to
study the populations of a pair of competing species. Instead of developing
explicit formulas for these differential equations, we instead make only quali-
tative assumptions about the form of the equations. We then derive geometric
information about the behavior of solutions of such systems based on these

assumptions,

11.1 Infectious Diseases

The spread of infectious diseases such as measles or malaria may be modeled
as a nonlinear system of differential equations. The simplest model of this
type is the SIR model. Here we divide a given population into three disjoint
groups. The population of susceptible individuals is denoted by S, the infected
population by I, and the recovered population by R. As usual, each of these
is a function of time. We assume for simplicity that the total population is

constant, so that (S + 1+ R)' =0,
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In the most basic case we make the assumption that, once an individual
has been infected and subsequently has recovered, that individual cannot
be reinfected. This is the situation that occurs for such diseases as measles,
mumps, and smallpox, among many others. We also assume that the rate
of transmission of the disease is proportional to the number of encounters
between susceptible and infected individuals. The easiest way to character-
ize this assumption mathematically is to put &' = —BSI for some constant
B > 0. We finally assume that the rate at which infected individuals recover is
proportional to the number of infected. The SIR model is then

S =—B8I
' =BSI —vI
R =vI

I

where § and v are positive parameters.

As stipulated, we have (S+ I + R) = 0, so that § + I + R is a constant,
This simplifies the system, for if we determine S(#) and I(¢), we then derive
R(t) for free. Hence it suffices to consider the two-dimensional system

S = —BSI
I' = BSI —vl.

The equilibria for this system are given by the S-axis (I = 0). Linearization
at (S, 0) yields the matrix
0 -—BS§
0 BS—v)’

so the eigenvalues are 0 and S — v. This second eigenvalue is negative if
0 < S <v/B and positive if § > v/p.

The S-nullclines are given by the S and I axes. On the I-axis, we have
I’ = —vl, so solutions simply tend to the origin along this line. The I-
nullclines are I = 0 and the vertical line S = v/8. Hence we have the
nullcline diagram depicted in Figure 11.1. From this it appears that, given
any initial population (Sp, Ip) with Sy > v/g and Iy > 0, the susceptible popu-
lation decreases monotonically, while the infected population at first rises, but
eventually reaches a maximum and then declines to 0.

We can actually prove this analytically, because we can explicitly compute
a function that is constant along solution curves. Note that the slope of the
vector field is a function of S alone:

I BSI—vI Y
S’ —~BSI BS
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/ S=v/B
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N
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Figure 11.1 The
nullclines and direction
field for the SIR model.

Hence we have

dr  diydi

Y
ds — dS/dt

ps’

which we can immediately integrate to find

Lt
B

Hence the function I + S — (v/8)log S is constant along solution curves. It
then follows that there is a unique solution curve connecting each equilibrium
point in the interval v/ < § < 0o to one in the interval 0 < S < v/ as shown
in Figure 11.2.

I=1(S) = -8+ — log S + constant.

S

Figure 11.2 The phase portrait
for the SIR system.
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A slightly more complicated model for infectious diseases arises when we
assume that recovered individuals may lose their immunity and become reip.
fected with the disease. Examples of this type of disease include malaria and
tuberculosis. We assume that the return of recovered individuals to the class S
occurs at a rate proportional to the population of recovered individuals. This
leads to the STRS model (where the extra Sindicates that recovered individualg
may reenter the susceptible group). The system becomes

8 = —BSI+ uR
I' = BSI —vI
R = vl — uR.

Again we see that the total population S + I + R is a constant, which we
denote by 7. We may eliminate R from this system by setting R =7 — § — [

§'=—BSI+pu(t—-S~1I)
I' = BSI — vl.

Here B, 11, v, and 1 are all positive parameters.

Unlike the SIR model, we now have at most two equilibria, one at (z,0) and
the other at

Amﬁ ~J - AM. Ev
B v+u

The first equilibrium point corresponds to no disease whatsoever in the pop-
ulation. The second equilibrium point only exists when 7 > /8. When
© = v/B, we have a bifurcation as the two equilibria coalesce at (7,0). The
quantity v/B is called the threshold level for the disease.

The linearized system is given by

o =Bl=ft  —pE—ii -
BI BS—v

At the equilibrium point (z,0), the eigenvalues are —p and Bt — v, so this
equilibrium point is a saddle provided that the total population exceeds the
threshold level. At the second equilibrium point, a straightforward computa-
tion shows that the trace of the matrix is negative, while the determinant is
positive. It then follows from the results in Chapter 4 that both eigenvalues
have negative real parts, and so this equilibrium point is asymptotically stable.
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Biologically, this means that the disease may become established in the com-
munity only when the total population exceeds the threshold level. We will
only consider this case in what follows.

Note that the SIRS system is only of interest in the region givenby I, § = 0
and § + I < t. Denote this triangular region by A (of course!). Note that the
[-axis is no longer invariant, while on the S-axis, solutions increase up to the
equilibrium at (7, 0).

Proposition. The region A is positively invariant.

Proof: We check the direction of the vector field along the boundary of A.
The field is tangent to the boundary along the lower edge I = 0 as well as at
(0,7). Along S = 0 we have §' = pu(r — I) > 0, so the vector field points
inward for 0 < I < 7. Along the hypoteneuse, if 0 < § < v/B, we have
§' = —BSI <0and I’ = I(BS — v) < 0 so the vector field points inward.
When v/ < S < v we have

- if v
—l<===-14+4—=<0
S BS
so again the vector field points inward. This completes the proof. |

The I-nullclines are given as in the SIR model by I = 0 and S = v/B. The
S-nullcline is given by the graph of the function

u(t —S)

I=1I{(8) = BSt

A calculus student will compute that I'(S) <0and I”(S) > 0when0 < S <.
So this nullcline is the graph of a decreasing and concave up function that passes
through both (7,0) and (0, 7), as displayed in Figure 11.3. Note that in this
phase portrait, all solutions appear to tend to the equilibrium point (8%, I*);
the proportion of infected to susceptible individuals tends to a “steady state.”
To prove this, however, one would need to eliminate the possibility of closed
orbits encircling the equilibrium point for a given set of parameters f8, ut, v,
and 7.

11.2 Predator/Prey Systems

We next consider a pair of species, one of which consists of predators whose
population is denoted by y and the other its prey with population x. We assume
that the prey population is the total food supply for the predators. We also
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Figure 11.3 The nullclines and
phase portrait in A for the SIRS
system. Here S =v=pu =1 and
T =2,

assume that, in the absence of predators, the prey population grows at a rate
proportional to the current population. That is, as in Chapter 1, when y = 0
we have x' = ax where a > 0. So in this case x(t) = xp exp(at). When
predators are present, we assume that the prey population decreases at a rate
proportional to the number of predator/prey encounters. As in the previous
section, one simple model for this is bxy where b > 0. So the differential
equation for the prey population is x’ = ax — bxy.

‘ For the predator population, we make more or less the opposite assump-
tions. In the absence of prey, the predator population declines at a rate
proportional to the current population. So when x = 0 we have y = —cy with
¢ >0, and thus y(1) = yp exp(—ct). The predator species becomes extinct in
this case. When there are prey in the environment, we assume that the predator
population increases at a rate proportional to the predator/prey meetings, or
dxy. We do not at this stage assume anything about overcrowding. Thus our
simplified predator/prey system (also called the Volterra-Lotka system) is

!

x' = ax — bxy = x(a — by)

!

y == +dxy=y(—c+dx)

where the parameters a, b, ¢, and d are all assumed to be positive. Since we are
dealing with populations, we only consider x, y > 0.

>m usual, our first job is to locate the equilibrium points. These occur at the
origin and at (x, y) = (c/d, a/b). The linearized system is

—b —b
[ a )4 »
dy Fnu_.a_xv %
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v x=c/d
SN
k \
1 f y=a/b
.
N
X

Figure 11.4 The nullclines
and direction field for the
predator/prey system.

so when x = y = 0 we have a saddle with eigenvalues a and —c. We know the
stable and unstable curves: They are the y- and x-axes, respectively.

At the other equilibrium point (c/d, a/b), the eigenvalues are pure imaginary
+i./ac, and so we cannot conclude anything at this stage about stability of
this equilibrium point.

We next sketch the nullclines for this system. The x-nullclines are given by
the straight lines x = 0 and y = a/b, whereas the y-nullclines are y = 0 and
x = c¢/d. The nonzero nullcline lines separate the region x, y > 0 into four basic
regions in which the vector field points as indicated in Figure 11.4. Hence the
solutions wind in the counterclockwise direction about the equilibrium point.

From this, we cannot determine the precise behavior of solutions: They
could possibly spiral in toward the equilibrium point, spiral toward a limit
cycle, spiral out toward “infinity” and the coordinate axes, or else lie on closed
orbits. To make this determination, we search for a Liapunov function L.
Employing the trick of separation of variables, we look for a function of the
form

L(x,y) = F(x) + G(y).

Recall that L denotes the time derivative of L along solutions. We compute

; d
L(x,y) = —L(x(1), y(1))
dt
B a&n&.n_‘ dG |,
=% Ta)
Hence
. dF dG
L(x,y) = x—(a — by) + y—(—c + dx).
dx dy
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We obtain [ = 0 provided

xdFldx  y dGldy

dx — ¢ by —a’
Since x and y are independent variables, this is possible if and only if

x dFldx  y dGldy
5 = ———— = constant.
dx — ¢ by —a

Setting the constant equal to 1, we obtain

dF c
—=d-=,
dx x
@G 4. 8
dy Y

Integrating, we find

F(x) = dx — clog x,
G(y) = by — alogy.

Thus the function

L(x,y) = dx — clog x + by — alog y

is constant on solution curves of the system when x, y > 0.

By considering the signs of 9 L/d x and dL/dy itis easy to see that the equilib-
rium point Z = (c/d, a/b) is an absolute minimum for L. It follows that L [or,
more precisely, L — L(Z)] is a Liapunov function for the system. Therefore Z
is a stable equilibrium.

We note next that there are no limit cycles; this follows from Corollary 6

in Section 10.6 because L is not constant on any open set. We now prove the
following theorem. .

Theorem. Every solution of the predator/prey system is a closed orbit (except
the equilibrium point Z and the coordinate axes).

Proof: Consider the solution through W # Z, where W doés not lie on the
X- or y-axis. This solution spirals around Z, crossing each nullcline infinitely
often. Thus there is a doubly infinite sequence - .. < I <ty <Hh < -
such that ¢, (W) is on the line x = ¢/d, and thy — +ooasn — +oo. If
W is not on a closed orbit, the points ¢1,(W) are monotone along the line
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Figure 11.5 The nullclines and
phase portrait for the
predator/prey system.

x = c/d, as discussed in the previous chapter. Since there are no _::.; nwn_m.m.
either ¢, (W) — Zasn — oo or &»ASQ =5 N as 1 — —00. M:MM _w _M
constant along the solution through W, this implies that L(W) = L(Z). F
this contradicts minimality of L(Z). This completes the proof.

The phase portrait for this predator/prey system is displayed E.m_m_.;w 1 H.w
We conclude that, for any given initial populations (x(0), y(0)) with x( u.m‘m
and y(0) # 0, other than Z, the populations of predator and prey Omn_.:mﬂn
cyclically. No matter what the populations of prey and ._u_,mmﬁon are, neither
species will die out, nor will its population grow indefi ::.a:r ol

Now let us introduce overcrowding into the prey equation. As in the logistic
model in Chapter 1, the equations for prey, in the absence of predators, may

be written in the form
x' = ax — Ax%.
We also assume that the predator population obeys a similar equation
Y =—g=py

when x = 0. Incorporating the assumptions above yields the predator/prey
equations for species with limited growth:

x = x(a— by — Ax)

¥ = y(—c+ dx — puy).
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As before, the parameters a, b, ¢, d as well as A and i are all positive. Whe

y = 0, we have the logistic equation x’ = x(a — Ax), which yields n@::?l:
at the origin and at (a/A, 0). As we saw in Chapter 1, all nonzero solutions .
the x-axis tend to a/A. o
. When x = 0, the equation for y is y’ = —cy — uy?. Since y’ <Owheny >
it follows that all solutions on this axis tend to the origin. Thus we nh\:m:.
attention to the upper-right quadrant O where x, y > 0. ¢

The nullclines are given by the x- and y-axes, together with the lines

L: a-by—ix=0
M: —cH+de—py=0.

Along the lines L and M, we have x’ = 0 and y/ = 0, respectively. There are
two possibilities, according to whether these lines intersect in Q or not.

We first consider the case where the two lines do not meet in Q. In this case
we have the nullcline configuration depicted in Figure 11.6. All solutions to the
right of M head upward and to the left until they meet M; between the lines
and M solutions now head downward and to the left. Thus they either meet [
or tend directly to the equilibrium point at (a/A, 0). If solutions cross L, the
then head right and downward, but they cannot cross L again. Thus .EQ SM
tend to (a/A, 0). Thus all solutions in Q tend to this equilibrium point. We
conclude that, in this case, the predator population becomes extinct and the
prey population approaches its limiting value of alA.

‘ We may interpret the behavior of solutions near the nullclines as follows
Since both x’ and y’ are never both positive, it is impossible for both ?.3.‘

Figure 11.6 The nullclines
and phase portrait for a
predator/prey system with
limited growth when the
nullclines do not meet in Q.

-
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and predators to increase at the same time. If the prey population is above
its limiting value, it must decrease. After a while the lack of prey causes the
predator population to begin to decrease (when the solution crosses M). After
that point the prey population can never increase past a/A, and so the predator
population continues to decrease. If the solution crosses L, the prey population
increases again (but not past a/A), while the predators continue to die off. In
the limit the predators disappear and the prey population stabilizes at a/}.

Suppose now that L and M cross at a point Z = (xp, yo) in the quadrant Q;
of course, Z is an equilibrium. The linearization of the vector field at Z is

x = (M0 —hxo)
dyo  —uyo

The characteristic polynomial has trace given by —Axp — pyo < 0 and deter-
minant (bd 4+ Ap)xoyo > 0. From the trace-determinant plane of Chapter 4,
we see that Z has eigenvalues that are either both negative or both complex
with negative real parts. Hence Z is asymptotically stable.

Note that, in addition to the equilibria at Z and (0,0), there is still an
equilibrium at (a/2, 0). Linearization shows that this equilibrium is a saddle;
its stable curve lies on the x-axis. See Figure 11.7.

It is not easy to determine the basin of Z, nor do we know whether there
are any limit cycles. Nevertheless we can obtain some information. The line
L meets the x-axis at (a/A,0) and the y-axis at (0, a/b). Let T be a rectangle
whose corners are (0,0), (p,0), (0, q), and (p, q) with p > alk, q > alb, and
the point (p, ) lying in M. Every solution at a boundary point of I" either

Figure 11.7 The nuliclines and
phase portrait for a predator/prey
system with limited growth when
the nullclines do meet in Q.
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enters I' or is part of the boundary. Therefore I" is positively invariant. Ever
point in @ is contained in such a rectangle, %

.w< the Poincaré-Bendixson theorem, the w-limit set of any point (x, y) in I"
with x, ¥ > 0, must be a limit cycle or contain one of the three equilibria (0 ov.
Z,or(alX,0). We rule out (0,0) and (a/A, 0) by noting that these mn_:m:_ulm.mam
saddles whose stable curves lie on the x- or y-axes. Therefore (x,y) is either
N oralimit cycle in I". By Corollary 4 of the Poincaré-Bendixson theorem an
limit cycle must surround Z. d

We observe further that any such rectangle I" contains all limit cycles
because a limit cycle (like any solution) must enter I, and T" is positively ::..mi..
ant. Fixing (p, q) as above, it follows that for any initial values (x(0), y(0))
EQ& exists fy > 0 such that x(¢) < p, y(t) < qif t > 5. We conclude m;:,
in q_rm long run, a solution either approaches Z or else spirals down to a limit
cycle.

From a practical standpoint a solution that tends toward Z is indistinguish-
able from Z after a certain time. Likewise, a solution that approaches a limit
cycle y can be identified with y after it is sufficiently close. We conclude that
any population of predators and prey that obeys these equations eventually
settles down to either a constant or periodic population. Furthermore, there
are absolute upper bounds that no population can exceed in the long run, no
matter what the initial populations are.

11.3 Competitive Species

We consider now two species that compete for a common food msu.vaﬁ Instead
of analyzing specific equations, we follow a different procedure: We consider a
large .n_mmm of equations about which we assume only a few qualitative features.
[n this way considerable generality is gained, and little is lost because specific
equations can be very difficult to analyze.

Let x and y denote the populations of the two species. The equations of
growth of the two populations may be written in the form

x' = M(x,y)x
¥ = N(xp)y

where the growth rates M and N are functions of both variables. As usual, we
assume that x and y are nonnegative. So the x-nullclines are given by x = 0
and M(x, y) = 0 and the y-nullclines are y = 0 and ZCDA\E = 0. We make
the following assumptions on M and N:

1. wmnm._cmm the species compete for the same resources, if the population
of either species increases, then the growth rate of the other goes down.
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Hence
aM aN
— <0 and — <0.
ay dx

2. Ifeither population is very large, both populations decrease. Hence there
exists K > 0 such that

M(x,y) <0 and N(x,y) <0 ifx>Kory=K.

3. In the absence of either species, the other has a positive growth rate up
to a certain population and a negative growth rate beyond it. Therefore

there are constants a, b > 0 such that

M(x,0) >0forx<a and M(x,0) <0 forx>a,
N(0,y) >0fory<b and N(0,y) <Ofory>b.

By conditions (1) and (3) each vertical line {x} X R meets the set © =
M™1(0) exactly once if 0 < x < a and not at all if x > a. By condition (1)
and the implicit function theorem, p is the graph of a nonnegative function
f:[0,a] = R such that f~'(0) = a. Below the curve w, M is positive and
above it, M is negative. In the same way the set v = N ~'(0) is a smooth curve
of the form

{5 12 =2},

where g: [0, b] — IR is a nonnegative function with g ~!(0) = b. The function
N is positive to the left of v and negative to the right.

Suppose first that 4 and v do not intersect and that p is below v. Then
the phase portrait can be determined immediately from the nullclines. The
equilibria are (0,0), (a,0), and (0, b). The origin is a source, while (a,0) is a
saddle (assuming that (3M/3x)(a,0) < 0). The equilibrium at (0,b) isa sink
[again assuming that (3N/3y)(0,b) < 0]. All solutions with yy > 0 tend to
the asymptotically stable equilibrium (0, b) with the exception of solutions on
the x-axis. See Figure 11.8. In the case where  lies above v, the situation is
reversed, and all solutions with x5 > 0 tend to the sink that now appears at
(a,0).

Suppose now that g and v intersect. We make the assumption that p N v
is a finite set, and at each intersection point, p and v cross transversely, that
is, they have distinct tangent lines at the intersection points. This assumption
may be eliminated; we make it only to simplify the process of determining the

flow.



248 Chapter 11 Applications in Biology
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Figure 11.8 The phase portrait
when g and v do not meet,

The nuliclines u and v and the coordinate axes bound a finite number of
connected open sets in the upper-right quadrant: These are the basic regions
where x’ 7 0 and y’ # 0. They are of four types:

K & >0 950, B: x' <0,y >0
C: %<0,y <o, Di 50,9 <0

Equivalently, these are the regions where the vector field points northeast,
northwest, southwest, or southeast, respectively. Some of these regions are
indicated in Figure 11.9. The boundary 8R of a basic region R is made up of
points of the following types: points of i N v, called vertices; points on y or v
but not on both nor on the coordinate axes, called ordinary boundary points;
and points on the axes. _

A vertex is an equilibrium; the other equilibria lie on the axes at (0, 0), (a,0),
and (0, b). At an ordinary boundary point Z € 3R, the vector field is either
vertical (if Z € p) or horizontal (if Z € v). This vector points either into or out
of R since p has no vertical tangents and v has no horizontal tangents. We call
Z an inward or outward point of 97, accordingly. Note that, in Figure 11.9,
the vector field either points inward at all ordinary points on the boundary of
a basic region, or else it points outward at all such points. This is no accident,
for we have:

Proposition. Let R be a basic region for the competitive species model. Then
the ordinary boundary points of R are either all inward or all outward.

Proof: There are only two ways in which the curves # and v can intersect at
a vertex P. As y increases along v, the curve v may either pass from below u
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v - Fi

Figure 11.9 The basic regions
when the nuliclines i and v
intersect.

to above w, or from above to below g. These two mnmzwlom are illustrated in
Figures 11.10a and b. There are no other possibilities since we have assumed
that these curves cross transversely.

Since x” > 0 below i and x’ < 0 above u, and since ' > 0 to _mrn left of v
and y’ <0 to the right, we therefore have the following configurations for the
vector field in these two cases. See Figure 11.11. .

In each case we see that the vector field points inward in two opposite basic
regions abutting P, and outward in the other two basic nmm.mo:m.

If we now move along p or v to the next vertex along this curve, we see w:mm
adjacent basic regions must maintain their inward or c:msaa. configuration.
Therefore, at all ordinary boundary points on each basic region, the vector
field either points outward or points inward, as required. |

n n

v

{a) (b)

Figure 11.10 In (a}, v passes from below u to above p as y
increases. The situation is reversed in (b).
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Figure 11.11 Configurations of the vector field near
vertices.

As a consequence of the proposition, it follows that each basic region and
its closure is either positively or negatively invariant. What are the possible
w-limit points of this system? There are no closed orbits. A closed orbit must
be contained in a basic region, but this is impossible since x(t) and y(t) are
monotone along any solution curve in a basic region. Therefore all w-limit
points are equilibria.

We note also that each solution is defined for all ¢ > 0, because any point
lies in a large rectangle I" with corners at (0, 0), (xo, 0), (0, o), and (xp, o) with
X0 > aand yo > b; such a rectangle is positively invariant. See Figure 11.12.
Thus we have shown:

Theorem. The flow ¢, of the competitive species system has the following
property: For all points (x, y), withx > 0,y = 0, the limit

lim ¢,(x, y)

f—00

exists and is one of a finite number of equilibria. |

< LSS

= B =}

Figure 11.12 All solutions must enter
and then remain in I".
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™

Figure 11.13 This configuration of p and v
leads to an asymptotically stable equilibrium
point.

We conclude that the populations of two competing species always tend to
one of a finite number of limiting populations.

Examining the equilibria for stability, one finds the following results. A ver-
tex where u and v each have negative slope, but . is steeper, is asymptotically
stable. See Figure 11.13. One sees this by drawing a small rectangle with sides
parallel to the axes around the equilibrium, putting one corner in each of the
four adjacent basic regions. Such a rectangle is positively invariant; since it can
be arbitrarily small, the equilibrium is asymptotically stable.

This may also be seen as follows. We have

M, Ny
slope of 4 = ——= < slopeof v = —— <0,
My Ny

where M, = 0M/9x, M, = oM/dy, and so on, at the equilibrium. Now recall
that M, < 0 and N, < 0. Therefore, at the equilibrium point, we also have
M, <0and N, <0. Linearization at the equilibrium point yields the matrix

xMy  xM,
yNx YN, -

The trace of this matrix is xM, + yM,, < 0 while the determinantis xy(MN, —
My Ny) > 0. Thus the eigenvalues have negative real parts, and so we have a
sink.

A case-by-case study of the different ways i and v can cross shows that the
only other asymptotically stable equilibrium in this model is (0, b) when (0, b)
is above g, or (a,0) when (a,0) is to the right of v. All other equilibria are
unstable. There must be at least one asymptotically stable equilibrium. If (0, b)
is not one, then it lies under g; and if (a, 0) is not one, it lies over . In that
case p and v cross, and the first crossing to the left of (a, 0) is asymptotically
stable.
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Figure 11.14 Note that solutions on either side of
the point Z in the stable curve of Q have very
different fates.

For example, this analysis tells us that, in Figure 11.14, only P and (0, b) are
asymptotically stable; all other equilibria are unstable. In particular, assuming
that the equilibrium Q in Figure 11.14 is hyperbolic, then it must be a saddle
because certain nearby solutions tend toward it, while others tend away. The
point Z lies on one branch of the stable curve through Q. All points in the
region denoted By, to the left of Z tend to the equilibrium at (0, b), while
points to the right go to P. Thus as we move across the branch of the stable
curve containing Z, the limiting behavior of solutions changes radically. Since
solutions just to the right of Z tend to the equilibrium point P, it follows that
the populations in this case tend to stabilize. On the other hand, just to the
left of Z, solutions tend to an equilibrium point where x = 0. Thus in this
case, one of the species becomes extinct. A small change in initial conditions
has led to a dramatic change in the fate of populations. Ecologically, this small
change could have been caused by the introduction of a new pesticide, the
importation of additional members of one of the species, a forest fire, or the
like. Mathematically, this event is a jump from the basin of P to that of (0, b).

11.4 Exploration: Competition an
Harvesting :

In this exploration we will investigate the competitive species model where we
allow either harvesting (emigration) or immigration of one of the species. We
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consider the system

X =x(1 —ax —y)

'

y=yb—x—y)+h

Here a, b, and h are parameters. We assume that a, b > 0. If h < 0, then we are
harvesting species y at a constant rate, whereas if h > 0, we add to the popula-
tion y at a constant rate. The goal is to understand this system completely for
all possible values of these parameters. As usual, we only consider the regime
where x,y > 0. If y(1) <0 for any ¢ > 0, then we consider this species to have
become extinct.

1. First assume that h = 0. Give a complete synopsis of the behavior of this
system by plotting the different behaviors you find in the a, b parameter
plane.

2. Identify the points or curves in the ab—plane where bifurcations occur
when h = 0 and describe them.

3. Now let h < 0. Describe the ab—parameter plane for various (fixed)
h-values.

4. Repeat the previous exploration for h > 0.

5. Describe the full three-dimensional parameter space using pictures, flip
books, 3D models, movies, or whatever you find most appropriate.

EXERCISES

1. TFor the SIRS model, prove that all solutions in the triangular region A
tend to the equilibrium point (7, 0) when the total population does not
. exceed the threshold level for the disease.
@ Sketch the phase plane for the following variant of the predator/prey
system:

X =x(1—x)—xy

y=r(-2)

@ A modification of the predator/prey equations is given by

axy

!
— x(1 — =
x xC %) x+1

/

y =y(l—-y)

where @ > 0 is a parameter.
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(a) Find all equilibrium points and classify them.
(b) Sketch the nullclines and the phase portraits for different values of g,
(¢) Describe any bifurcations that occur as a varies.

4. Another modification of the predator/prey equations is given by

xy
x+b

X' =x(1—x)—
y=y(1-y)

where b > 0 is a parameter.

(a) Find all equilibrium points and classify them.

(b) Sketch the nullclines and the phase portraits for different values
of b.

(c) Describe any bifurcations that occur as b varies.
(5.) The equations

!

X =x(2—x—y)

!

¥y =y(3—-2x—y)

satisfy conditions (1) through (3) in Section 11.3 for competing species.
Determine the phase portrait for this system. Explain why these equations
make it mathematically possible, but extremely unlikely, for both species
to survive.

6. Consider the competing species model

x' =x(a—x—ay)

y =pb—bx—y)

where the parameters a and b are positive.

(a) Find all equilibrium points for this system and determine their
stability type. These types will, of course, depend on a and b.

(b) Use the nullclines to determine the various phase portraits that arise
for different choices of a and b.

(c) Determine the values of a and b for which there is a bifurcation in

~ this system and describe the bifurcation that occurs.

(d) Record your findings by drawing a picture of the ab—plane and
indicating in each open region of this plane the qualitative structure
of the corresponding phase portraits.

7.
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Two species x, y are in symbiosis if an increase of either population leads
to an increase in the growth rate of the other. Thus we assume

x' = M(x,y)x
¥y = N(xy)y
with
aM aN
— >0 and — >0
ay dx

and x, y = 0. We also suppose that the total food supply is limited; hence
for some A > 0, B > 0 we have

M(x,y) <0 if x> A,

N(x,y) <0 if y>B.

If both populations are very small, they both increase; hence
M(0,0) >0 and N(0,0) >0.
Assuming that the intersections of the curves M ~'(0), N~'(0) are finite,

and that all are transverse, show the following:

(a) Every solution tends to an equilibrium in the region 0 < x < A,
0<y<B

(b) There are no sources.

(¢) There is at least one sink.

(d) IfoM/ox <0and dN/dy < 0, there is a unique sink Z, and Z is the
w-limit set for all (x, y) with x > 0, y > 0.

Give a system of differential equations for a pair of mutually destruc-
tive species. Then prove that, under plausible hypotheses, two mutually
destructive species cannot coexist in the long run.
Let y and x denote predator and prey populations. Let

x = M@ y)x

y'=N(xy)y

where M and N satisfy the following conditions.

(a) Ifthereare notenough prey, the predators decrease. Hence for some
b>0

N(x,y) <0 ifx<b.
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(b) An increase in the prey improves the predator growth rate; hence
dN/dx > 0.

(c) In the absence of predators a small prey population will increase;
hence M(0,0) > 0.

(d) Beyond a certain size, the prey population must decrease; hence
there exists A > 0 with M (x,y) <0if x > A.

(e) Anyincrease in predators decreases the rate of growth of prey; hence
aM/dy <0.

(f) The two curves M~1(0), N~1(0) intersect transversely and at onlya
finite number of points,

Show that if there is some (1, v) with M (w4, v) > 0 and N (1, v) > 0 then
there is either an asymptotically stable equilibrium or an w-limit cycle.
Moreover, show that, if the number of limit cycles is finite and positive,
one of them must have orbits spiraling toward it from both sides.
Consider the following modification of the predator/prey equations:

axy
X+c

x =x(1—-x)—

y=n(1-)

where a, b, and ¢ are positive constants. Determine the region in the
parameter space for which this system has a stable equilibrium with both
x,y # 0. Prove that, if the equilibrium point is unstable, this system has
a stable limit cycle.

Applications in
Circuit Theory

In this chapter we first present a simple but very basic example of an electrical
circuitand then derive the differential equations governing this circuit. Certain
special cases of these equations are analyzed using the techniques developed
in Chapters 8 through 10 in the next two sections; these are the classical
equations of Lienard and van der Pol. In particular, the van der Pol equation
could perhaps be regarded as one of the fundamental examples of a nonlinear
ordinary differential equation. It possesses an oscillation or periodic solution
that is a periodic attractor. Every nontrivial solution tends to this periodic
solution; no linear system has this property. Whereas asymptotically stable
equilibria sometimes imply death in a system, attracting oscillators imply life.
We give an example in Section 12.4 of a continuous transition from one such
situation to the other.

12.1 An RLC Circuit

In this section, we present our first example of an electrical circuit. This circuit
is the simple but fundamental series RLC circuit displayed in Figure 12.1. We
begin by explaining what this diagram means in mathematical terms. The
circuit has three branches, one resistor marked by R, one inductor marked by
L, and one capacitor marked by C. We think of a branch of this circuit as a





