PHYSICS 1: MATHEMATICAL ANALYSIS I. PROBLEMS 2

- 1. Differentiate $x^3 \cos(5x+1)$; $\ln(\sec x + \tan x)$; x/(x+1).
- 2. Find dy/dx when (a) $y^3 = x^3 xy$; (b) $xe^y = \cos(xy)$.
- 3. Sketch the graphs of the following:
 - (a) y = x + 1/x, $(x \neq 0)$;
 - (b) $y = \ln(1-x^2), -1 < x < 1;$
 - (c) $r = a(1 \cos \theta)$ where r and θ are polar coordinates and a is a positive constant.

Note: Plane polar co-ordinates (r, θ) are related to Cartesian co-ordinates (x, y) by $x = r \cos \theta$ and $y = r \sin \theta$; hence $r^2 = x^2 + y^2$ and $\theta = \tan^{-1} \left(\frac{y}{x}\right)$.

- 4. Find the stationary points of the function $f(x) = x^2(1-x)^3$ and determine their nature. Sketch the graph y = f(x).
- 5. If $r(1+\cos\theta)=2$, where r and θ are plane polar coordinates, express the equation in terms of cartesian coordinates (x,y); show that the graph is a parabola and sketch it.

STARRED PROBLEMS

- 6* Differentiate $y = \sin^{-1}\{x/(1+x)\}\$ and $y = \sec^{-1}(x)$.
- 7* Find where the function

$$f(x) = \frac{2x^2 - 5x - 25}{x^2 + x - 2}$$

is discontinuous. Find also the points where it is zero, its limiting values as $x \to \pm \infty$ and its maximum and minima. Hence sketch its graph.