PHYSICS 1: MATHEMATICAL ANALYSIS I. PROBLEMS 1

- 1. If $f(x) = x^2 3x + 2$, find f(0), $f(x^2)$, f(x+1). For what values of x does f(x) = 0? For what values of x does f(2x) = 0?
- 2. Find the inverse of each of the functions:

(a)
$$f(x) = 3x + 4$$
, all real x ;

(b)
$$f(x) = 2x + x^2$$
, $0 < x < 1$.

3. Are the following functions even, odd or neither?

(a)
$$x^2 + 2\sin x$$
;

(a)
$$x^2 + 2\sin x$$
; (b) $(1+x^4)^{-1}\cos 3x$;

(c)
$$x + |x|$$

(c)
$$x + |x|$$
; (d) $\sin^3 x$.

4. Evaluate the following limits:

(a)
$$\lim_{x \to \infty} \frac{x^2 + 1}{x^2 - 1}$$

(a)
$$\lim_{x \to \infty} \frac{x^2 + 1}{x^2 - 1}$$
; (b) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 - x}}{x}$.

5. Evaluate the limits:

(a)
$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right)$$

(a)
$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right)$$
; (b) $\lim_{x \to 1} \frac{x^9 + x - 2}{x^4 + x - 2}$.

Hint for (b): Either use L'Hôpital's Rule or put x = 1 + h and use the binomial expansion.

Starred Question

6* Given the definitions (from the lectures) of the hyperbolic functions

$$\cosh x = \frac{(e^x + e^{-x})}{2} \qquad \sinh x = \frac{(e^x - e^{-x})}{2} \qquad \tanh x = \frac{\sinh x}{\cosh x}$$

show that

$$1. \qquad \cosh^2 x - \sinh^2 x = 1,$$

$$2. \qquad \cosh^2 x + \sinh^2 x = \cosh 2x,$$

3.
$$\sinh(x_1 + x_2) = \sinh x_1 \cosh x_2 + \sinh x_2 \cosh x_1,$$

4.
$$\frac{d}{dx} \tanh x = \operatorname{sech}^2 x$$
 $(\operatorname{sech} x = \frac{1}{\cosh x})$.

Note the differences in the signs in 1) and 2) from the trigonometric cases.