2
Numbers
2.1 Prime Numbers

Theorem: There are an infinite number of primes
Proof:
Suppose, for contradiction the number of primes if finite.


Hence, we can make a list p1 < p2 < p3 < … < pn

Any larger number is divisible by p1 … pn

Consider A = (p1 . p2 . … . pn) + 1


A > pn

But it is not divisible by p1 … pn


Contradiction


Original statement is false, QED
Fundamental Theorem Of Arithmetic

Any number N has a unique fractionalisation into primes i.e. N = p1a x p2b x …

Where a,b,c are natural numbers and form a unique combination.

Uniqueness if N = p1a’ x p2b’ x …
Then a = a’

         b = b’

e.g. 2a x 3b = 2p x 3q
Cancelling factor of 2 gives a = p

Cancelling factor of 3 gives b = q

2.2 Proof By Induction

We want to prove P(n) 
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We need to prove 2 things

1) P(1) is true

2) P(r) 
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Which is true
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Which is of the correct form, QED

2.2 Rationals and Irrationals
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 These are not rational numbers but appear in geometry
Also the appear in limits of sequences. 

2.3 Rational And Irrationals Numbers

Proof that 
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 is irrational

Lemma (A theorem used to prove another theorem) Even2 = Even, Odd2 = Odd, conversely 
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1. Suppose for contradiction 
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 is rational, i.e. 
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2. Assume all common factors in q and p have cancelled, therefore p and q cannot both be even.

3. 
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p is even and can be written as p =2r

4.
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q is even

5.
p,q both even, Contradiction.
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is proved to be irrational on class work.

It can also be proved using the fundamental theorem of arithmetic. 

If 
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As 2a = 2n+1 is insoluble, there is a contradiction. This principle can be generalised to all non square roots.

Proof e is irrational.
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Suppose, for contraction 
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Multiplying each side by (q-1)! 

Gives 
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p(q – 1)! Is an integer.
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    Integer                 +    R
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  Integer = Integer + R

Contradiction

[image: image23.wmf]2

 Satisfies x​2 -2 =0

It is an algebraic number, satisfying a polynomial equation.

anxn + an-1xn-1 + … + a1x + a0 = 0

For n<4 x has a solution in terms of a proof.

n>5 No root solution is possible (Abel proved this)
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are not algebraic but transcendental.

Irrationals are either algebraic or transcendental.

2.4 Decimal Representation

Every real no x has a decimal representation.
x = a0. a1a2a3… 
This representation is not unique as 0.999… = 1
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This is the only essential example of non uniqueness.

The decimal representation for a rational number repeats periodically.

Hence periodic indicates a rational number.

e.g.
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Generally, the repeating decimal can be represented
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For the decimal notation we use base 10
e.g. 
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Binary representation we use base 2:

i.e.
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e.g.
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e.g.
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You can have any base as long as 
0 < x < 1
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an = 0,1 … (b-1)

Ternary Representation (Base 3)
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e.g.
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2.5. Rational Approximations
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2.6 Countability



Reals

Rationals



Irrationals

Integers
Proper Fractions
Algebraic
Transcendental
How numerate are rationals, algebraic and transcendental numbers?

Definition:
Set A is countable is its elements can be put in an exhaustive ordered list 
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Equivalently if there exists a bijection 
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e.g.
As the even numbers can be placed in an ordered list they are countable. 
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As the bijection f(n) = 2n exists, even numbers are countable.

e.g.

All integers 
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 are countable as:

f(2n) = n
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f(2n-1) = -(n-1)
n > 1
i.e.
Even N to count positive


Odd N to count negative

e.g.

All rationals Q


[image: image45.wmf]4

4

3

4

2

4

1

4

4

3

3

3

2

3

1

3

4

2

3

2

2

2

1

2

4

1

3

1

2

1

1

1

0

,

,

þ

ý

ü

î

í

ì

>

Î

=

n

N

n

m

n

m

Q


There exists a zigzag path through the entire array, so countable.
There exists a bijection 
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       Pairs (m,n)
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Defines a bijection 
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Actually 
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but any subset of N is also countable, i.e. bijection 
[image: image51.wmf]N

S

«



[image: image52.wmf]N

NxN

«


      Bijection 

N x N x N is also countable

N x N x N … x N (n times) is also countable, using theorem of arithmetic.

Similarly Z x Z x Z … x Z (n times) is also countable.

Algebraic Numbers:

x satisfies the equation:
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Where 
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Algebraic numbers are sets of all x satisfying all such equations for all n. This set is countable.

Define the height of each equation by
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For fixed hn there is a fixed number of values an … a0 and each has a finite number of solutions. Hence algebraic numbers are labelled by:
N
x
Z
x
N
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Hence Countable

Alternate Proof


Assume for contradiction points in [0,1] can be listed

r1, r2, r3, r4, …

Assign length 
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Total Length 
[image: image58.wmf]å

¥

=

<

=

1

1

9

1

10

1

n

n


Contradiction

R x R < Points (x,y) in plane

[0,1] 
x = 0.a1a2a3…

y = 0.b1b2b3…

Points (x,y)in plane may be labelled by 0.a1b1a2b2…
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What about irrationals?
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Real = Rations and (Reals that are not rational)

Theorem

If A and B are countable, then 
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Proof
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2.7 Real Numbers

What distingushs R from Q?
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If x is real there is an upper limit, if x is rational there is not.
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1 is smallest element (min)

10 is largest element (max)

Closed Interval [0,1] = 
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Open Interval (0,1) = 
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No min, no max

Definition:

For 
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A

Ì

if there exists 
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such that a < b for all a there is an upper bound for a. Can have 
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e.g. x = 1 is upper bound for [0,1] and (0,1)

If 
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then it must also be a max. Similarly for lower bound.

Definition:
If A is bounded above set in R then the least upper bound of A is bounded such that b < c for any upper bound c.

Least Upper Bound [0,1] = 
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Least Upper Bound (0,1) = 
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Equivalently:
If b us the least upper bound then there exists 
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If not 
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 is least upper bound. Contradiction. 

e.g.


[image: image78.wmf]A

a

a

N

n

n

n

x

x

A

Î

"

<

þ

ý

ü

î

í

ì

Î

+

=

=

1

,

1


Least Upper Bound = 1 
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Proves 1 is the least upper bound.

e.g.
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Theorem:
S has no rational least upper band (proof later)

The Completeness Axiom – Defining Property Of Real Numbers

If 
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 is bounded above then A has a least upper bound which is real (this would not be satisfied by rationals).
Now we to show that numbers like 
[image: image85.wmf]2

 exist in the real line.

Proof Consider 
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Completeness Axiom 
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 S has a least upper bound l and we can show l2 = 2

We show l2 < 2 and l2 > 2 are impossible hence l2=2

i) Let l2 < 2

We define 
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 so 0 < 
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If we assume 
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So l is not the upper bound
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ii) Let l2 > 2

We define 
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 so 0 < 
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< 1 such that 
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So l is not the least upper bound
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Leaving l2 = 2 as on point solution in the real line

This proof also shows 
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Nested Interval Property Of Reals


   a1            I1                   b1
        a2        I2            b2
                  etc
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This nested representation is show the decimal line up works.
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This is the defining property of the reals.
Another proof if the unaccountability of the reals.

Assume for contradiction 
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Where 
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By the nested interval property there exists 
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So cannot be in the original list.

Contradiction.

Archimedean Property Of Reals   
Proved using the completeness axiom
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2.8 Cantor Set



 EMBED Equation.3  
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The Cantor Set is formed by continuously deleting the middle third to get 
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The length of each section removed is equal to 
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So the set as no length, yet it contains:
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As the elements in the Cantor Set can be expressed as 
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The Cantor Set can be thought of in ternary form by removing all elements that have a 1 in there representation.
So 0.a1a2a3… where ai = 0,2 is a member

Hence 0.02020202… is a member

Which is ¼
As the Cantor Set has a bijection with the binaries which has a bijection with the reals it is uncountable.
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