Paper Number(s): ISE2.9

IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE
UNIVERSITY OF LONDON

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2000

ISE PART I: M.Eng. and B.Eng. and ACGI

CONTROL SYSTEMS
Friday, May 12 2000, 2:00 pm

There are FIVE questions on this paper.
Answer THREE questions.

All questions carry equal marks.

Corrected Copy

Time allowed: 2:00 hours

U\/o’M ‘
— Phed

Examiners: Dr LM. Jaimoukha, Dr J.M.C. Clark



1. Consider the mass-spring-damper system shown in Figure 1 below, in which y(t) de-
notes the displacement of the mass M from its rest position. A force u(t) is applied
to the mass M as shown.

(a) By considering the balance of forces on the mass, derive the differential equa-
tions relating u(t) to y(¢). 5]

(b) Derive a state-variable model in the standard form:
#(t) = Az(t)+ Bu(t),

y(t) = Cz(t).
(8)

(¢) Derive the transfer function between u(s) and y(s). 5)

(d) Take M = 1K g, K = 1N/m and D; = D; = 1Ns/m. Suppose that u(t) = sinwt.
Find the steady-state response y,,(t). 5]

Figure 1
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2. Figure 2 below depicts a feedback control system with

k

“= e

where k is a design parameter. Design a stabilising compensator K (s) as follows:

(a) Choose K(s) so that when r(t) is a unit step,
rt)=1, 120,
applied at ¢ = 0, the steady-state error must satisfy

tl_x’rgxo e(t) = 0.

(b) Find the range of values of & such that the closed-loop is stable.

(c) Find the minimum value of k such that when r(¢) is a unit ramp,
rt)y=t, t20,
applied at ¢ = 0, the steady-state error must satisfy

tl_l.To e(t) < 1.

Figure 2
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3. Consider the feedback control system shown in Figure 3 below. Here,

1

O = L G+

and A'(s) is the transfer function of the compensator.

(a) For K(s) = k, a constant compensator, draw the root locus accurately as k
varies in the range 0 < k < 0. 4]

(b) Find the constant compensator K(s) = k which gives a critically damped re-
sponse to a unit step reference r(t). 6]

(c) Design a first order compensator K(s) = as follows:

k
-7

. Choose the compensator pole p so that the root locus of the compensated
system passes through the point —1 + j.

ii. Draw a rough sketch of the root locus of the compensated system.

iii.

Choose the constant gain k so that the closed-loop transfer function has a
pole at —1 + 7.
(20]
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4. Consider the feedback control system in Figure 4 below. Here,
4s+1)
(s—1)?

G(s) =
and K(s) is the transfer function of a compensator.

(a) Sketch the Nyquist diagram of G(s), clearly indicating the low and high fre-
quency portions, as well as the real-axis intercepts. 7

(b) Suppose that K'(s) = 1. Use the Nyquist diagram to show that the closed-loop
system is stable and determine the phase margin. 17}

(c) Without doing any actual design, briefly describe how a phase-lead compen-
sator,

_ 1+ s/wy
T l4s/w,’

K(s) 0 <wp <wy,

would affect the phase margin. Indicate in which frequency range should wp
and w, be chosen. 6]
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5. Consider the feedback control system shown in Figure 5 below. Here,
1
© =G
and K(s) is the transfer function of the compensator.
(s) ¥(s)
O
Figure 5

(a) For K(s) = k, a constant compensator, draw the root locus accurately as k
varies in the range 0 < k < 0. 5]

(b) Design a proportional-plus-derivative compensator K(s) = k(s — z) as follows:

. Choose the compensator zero z so that the root locus of the compensated
system (s — z)G(s) passes through the point —2 + j2.

i. Draw a rough sketch of the root locus of the compensated system.

ili. Choose the constant gain k so that the closed-loop transfer function has a

pole at —2 + j2. [10]

(c) Suppose now that the input to the compensator K (s) designed in Part (b) is
corrupted by a noise signal

v(t) = Vo sinwt,

as shown in Figure 6 below, where ¥, and w are constants. Comment on the
likely impact of this noise on the performance of the control system in Part (b).

Bl
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SOLUTIONS (ISE2.9, 2000)

1. (a) Applying Newton's laws on the mass,
u(t) = Mg(t) + (D + D)g(e) + Ky(t).

(b) Take x1(t) = y(t), x2(t) = y(t). Then,
0 . 1 #4(t) 0
[_7%_D1+D2][Iz(t)]+[7é[j|““)

OIEE

(¢) Taking the Laplace transform of the differential equation in part (a):

—
[
|

=
I

[Ms? + (D1 + Da)s + Kly(s) = uls).

The transfer function is then given by

1
9) = Ay (D 4 Daet

(d) Putting in the numbers, we get,

g(s) ! !

T 24l Gt

Since g{s) is stable, the steady-state response to a sinusoid of frequency w is also
a sinusoid of the same frequency, with an amplitude |g(jw)| and phase Lg(jw).
Since w = L, we have that, in the steady-state,

l9(s)|sin (¢ + £9(3))
0.5sin (t — g)
-0.5cost

Yas(t)
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(a) After some block diagram manipulations,

e(s) 1

r(s = :q k
(s) 1+1\(.)mlr

Using the final value theorem of the Laplace transform,

s7(s)

e = lim e(t) =lim se(s) = lim ——————F—
=00 =0 30 1 + ,\’(s)(\i T 1)
. 1
lim 1+ (s —k. o
U+ Ky

since r(s) = 1/s. For zero steady-state error, we need K{s) = 1/s, that is, a
type 1 system, provided & is chosen so that the closed-loop system is stable.

() Taking I'(s) = 1/s, gives the characteristic equation as

k
s(s +vﬁ =0

or
S 4+2%+s+k=0

The Routh array is then

& 1 1
s? 2 k
5 | L —0.5k

1 k

For stahility, we require no sign changes in the first column. Thus the closed-
loop will be stable for

0<k<?

(¢) When r(s) = 1/s? (unit ramp), we have

e, = lim

=
s+ 17
= k.

Therefore, the minimum value of k so that e,, <11isk = 1.
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3.

(a) The plot is shown below.

5
fin
(b) For a critically damped response, the closed-loop poles must be equal and real.

The characteristic equation is given by

1+m=0 = 4354+ 24k=0 2 (s+1.5)+k—-0.25=0 = k=0.25.
(¢) 1. Let the angle between (=14 5) and p be 0. Applying the angle criterion:
0 — (90° + 45° + 8) = £180°
or § = 45°. Thus p = —2.
ii. The root locus is shown below.

29— T T T |

jii. Since (=1 + j) lies on the root locus, we use the gain criterion to find A:
1

k= —ml;:-lﬁ =2
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4. (a) The Nyquist plot is shown below. The real-axis intercepts can be found by

(b

setting the imaginary part of G(jw) to zero. This gives intercepts at w; =
0,3, 00 and so G(jwi) = 4, —2,0, respectively.

Since the intercept with the negative real axis is at —2, the number of anticlock-
wise encirclements of the —1 + 0 point is 2. Since the open-loop system has two
unstable poles, it follows from the Nyquist stability criterion that the closed-
loop system is stable. For the phase margin, we need the intercept with the
unit circle centred on the origin. We solve |G(jw)| = 1, this gives w; = £v/15
and arg [G(jw;)] = —133.4°. The phase margin is then 46.6°.

The phase-lead compensator has positive and large phase between wo and w,
which tends to improve the phase margin. We should therefore place w, and
wy in the crossover frequency range (when |G(jw)| ~ 1).

Nyquist Diagrams
From: U{1)

imaginary Axis
To:viny
s
7

1S

Real Axis
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(a) The plot is shown below.

mag Axs

() i. Let the angle between (=24 j2) and = be 0. Applying the angle criterion:
0= 2(116.565°) = +130°

or ) =53.13°. Thus = = —3.5.

ii. 'T'he root locus is shown below.

]
faatAxs

(¢) The signal at the input of the compensator is given by (/)4 Vi sinwl. Thus the
signal at the input of the plant is & (¢(1) — z¢(1)) 4k (wVy coswl — zVysinwl). 11
the frequency w is too large, then the noise term at the input of the plant may
be too large and is likely to deteriorate the performance of the control system.
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