(T AT YT H B I (el R

(Y O P Y I o I Y A O R TS A ER U S A E Y & I LA SN RN 10 BT A
T I I T R TR R A AP (T

(T I o R B S| S B T I T Y I OO O I NV I ST T (O I 30 O N FY RO
TaANT S vy

(Y I Y o B I R RETTR TR I

SO AR BN GINEL BN, 2
Boolae T3 7 e

| T I TIN B M PO T T PR TR BN

- Saap -
Seemies VRS e e

Correeted € Y

Faanooe b

la Briefly explain (in no more that 15 lines) the concepts of abstract class, abstract
operation (method) and association (with) class.

b SafeBooking is a travel booking system that caters for complex journeys. In
SafeBooking a complex journey may be composed of any number of segments which
can be either a simple journey or a complex journey. Simple journeys can be either
transportations, or stopovers. Each simple journey has a start date and an end date.
Transportations also have a departure time and arrival time, as well as an origin and a
destination. Each stopover has a location. Each simple journey is associated with at
most one booking made with a supplier, and each booking covers a single simple
journey. Bookings can be either accommodation bookings or transportation bookings.
All bookings have a start date and an end date. Transportation bookings also have a
departure time and an arrival time, as well as a departure and a destination location.
Accommodation bookings have a location.

Draw a UML class diagram showing the system described above. Show classes, their
relationships and their attributes. Indicate the cardinality (multiplicity) of associations
and any classes that are abstract.

C Assume that the Java classes implementing bookings exist. Write a Java implementation
for the journey classes which permits to check that booking details correspond to the
journey details. For a complex journey this requires checking all its segments. For
simple journeys this requires checking start and end dates, departure and arrival times
and locations. Furthermore, you should check that transportations are only associated
with transportation bookings and that stopovers are associated only with
accommodation bookings.

Indicate the classes, their attributes and any checking functions, but constructors are not
required. Indicate classes or methods that are abstract.

You may use the following Java operators:

Object instanceof Class -> Boolean
// returns true if object o is an instance of
// class c and false otherwise

Super .method() // calls the with name “method” in the superclass.

For questions 1b and 1c assume that dates are encoded using a class pate, locations
are encoded as strings and time is encoded as the number of minutes since the
beginning of the day. Assume all attributes are public.

The two parts carry, respectively, 20%, 40%, 40% of the marks.

© University of London 2001 Page 1 of 4

2a A bank account system is used to manage bank accounts which can be accessed by
several customers. Accounts can be either: (i) Interest Accounts where the bank pays
interest on the current balance which must remain positive or (ii) Mortgage Accounts
where interest is added to the amount payable to the Bank and which are associated with
a singe collateral which has a value. The system is flexible so that it can be used with
multiple implementations of the various accounts.

For mortgage accounts a Bank can set the collateral associated with a mortgage account
and link a mortgage account to any number of interest accounts. A collateral is denoted
by an interface containing a getvalue() operation which returns its value.

A customer can perform only the following operations on an account:

void payIn(float sum) // pay in a sum of money

float withdraw(sum fleoat) // withdraw a sum of money, returns the sum
float getBalance() // returns current balance

float get Ratel() // returns the current interest rate

A bank can perform only the following operations on an account:

float updateBalance() /* performed daily, updates the balance
with the daily interest */
float calculateRate(float profit) /* calculates (and returns)an
interest rate given a profit margin */
float getBalance() // returns current balance

Draw a UML class diagram showing the bank and customer classes and all the
interfaces needed. Indicate the functions of each interface and show all relationships
between the entities including dependencies.

b All banks have a common yearly base-rate which is shared by all banks and each bank
has its own profit-margin target. The interest rate on an interest account is equal to the
base-rate minus the profit-margin. The interest rate on a mortgage is the sum (S) of the
base-rate and the profit-margin increased by a risk premium (R). Risequalto S
multiplied by the ratio between the account balance and the value of the collateral. In the
case of a mortgage, the interest rate is applied to the balance of the account reduced by
the sum of all the balances in the linked interest accounts. Daily interest is equal to the
yearly interest rate divided by 365.

Design the classes which satisfy the interfaces written in question 2a and implement the
functionality described above. You should:

1) Draw a UML class diagram specification of the classes together with the
interfaces they implement. Indicate classes, interfaces and their relationships but
do not indicate operations.

1) Write the Java implementation for these classes. Show attributes and functions
of classes but not the constructors.

The two parts carry, respectively 25% and 75% of the marks.

© University of London 2001 Page 2 of 4

3a Briefly explain (in no more than 15 lines):

i) the role of statechart diagrams, class diagrams and interaction diagrams in UML
stating what they can specify and why they are complementary,

ii) The differences between an activity and an action in UML statecharts.
b Consider the following aspects of a mobile-phone:

When switched on, a mobile phone enters a start-up state where it starts by attempting
to detect a network on which it can log-on.

When logged onto a network, it enters its usual state of operation (also called Ready
state) in which it continuously polls the network. In this state, any numerical key-press
starts dialling a number. While dialling a number each numerical key-press adds the key
to the dialling buffer and pressing cancel removes the last key from the buffer. Pressing
cancel when the buffer is empty, will return the phone to the Ready state.

Pressing call in the dialling stage will attempt the connection. If successful, the phone
enters a talking state and if unsuccessful, the phone returns to the Ready state. While
talking, pressing the callEnd button will return the phone to the Ready state.

While the phone is either Ready, dialling a number, or connecting, an incoming call will
display the caller’s number and the phone will continuously ring. Pressing call will
accept the incoming call while pressing callEnd will return the phone into whatever
state it was in when the incoming call arrived. In this latter case, the caller’s number is
added to the missedCalls list.

Loss of signal while dialling a number, connecting or while in Ready state will cause a
re-start of the phone and network detection.

Draw a UML state chart diagram for the system above.

¢ The phone is powered by a battery and will switch off if the battery is empty or if the
on/off button is pressed. If the phone detects a continuous input current (placed on the
charger) it will start charging. The phone will revert to being battery powered when
removed from the charger.

Considering your answer to question 3b as a composite state, draw a UML statechart
diagram of the phone together with its battery. Also show the changes triggered by its
on/off switch.

The three parts carry, respectively, 25%, 50%, 25% of the marks.

© University of London 2001 Page 3 of 4

da

A university department has a number of students who must register at the beginning of
every year with the central college registry. The UML class diagram below represents
the relationships between classes in the system and the operations of each class.

Department

1 | getDirectory():Directory
notify(candidateNo:String):void
getForm():Form

* 1

Student 1 Directory

registerDeg():void getRegistry():Registry

tryRegister(r:Registry):boolean

1

1
|
|
|
|
IL<instan'tiate>>

\|/ 1
Form Registry

checkForm(f:Form):boolean|

1

fillForm(s:String):void
getDepartment():Department register(f:Form):boolean

To register with the central registry (registerDeg operation) a student must first obtain a
reference to the central directory from the department it is associated with, and then
obtain a reference to the registry from the directory (getRegistry). The student then tries
to register by repeatedly invoking its own tryRegister operation until this operation
returns true. In the tryRegister operation, the student first obtains a new form from the
department (getForm) and fills in the form (fillForm). The student then tries to submit
this form to registry by calling the register operation on the registry object.

The registry first checks the form (checkForm). If this operation returns true it will first
query the submitted form to obtain the department concerned (getDepartment) and will
then notify the department with a new candidate number (notify), otherwise it will return
false as the result of the operation.

Note that when getForm is called, the department creates a new instance of a form.

Draw a UML sequence diagram for the registerDeg operation of the student class.
Indicate message sequence numbers and parameters where known.

Draw a UML collaboration diagram for the registerDeg method. Indicate which objects
and links are transient. Message sequence numbers, parameters and return values are not
required.

Briefly explain (in no more than 15 lines) the differences and similarities between
sequence and collaboration diagrams and why they are both useful. Use your answer to
questions 4a and 4b to support your argument.

The three parts carry, respectively, 50 %, 30%, 20% of the marks.

© University of London 2001 Page 4 of 4

