‘' E4.52

IMPERIAL COLLEGE LONDON _~ ISE3.35

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING
EXAMINATIONS 2007

EEE/ISE PART IllI/IV: MEng, BEng and ACGI

Corrected Copy

REAL-TIME OPERATING SYSTEMS

Tuesday, 8 May 10:00 am

Time allowed: 3:00 hours

There are SIX questions on this paper.

Answer FOUR questions.

All questions carry equal marks.

Any special instructions for invigilators and information for
candidates are on page 1.

Examiners responsible First Marker(s) : T.J.W. Clarke
Second Marker(s) : Y.K. Demiris

© University of London 2007

Special instructions for invigilators

The booklet RTOS Exam Notes should be distributed with the paper.

Special instructions for students

You may use the booklet RTOS Exam Notes which is a reproduction of that published on the course web-
site before the exam.

Real-Time Operating Systems page 1 of 7

b)

d)

Real-Time Operating Systems

The Questions

Write pseudo-code using the FreeRTOS API to illustrate mutually exclusive
access to a shared resource using (i) critical sections and (ii) semaphores. When
writing an application, how would you choose between these two methods?

In the FreeRTOS API critical sections can be enforced in two distinct ways.
What are they, and what are their relative advantages and disadvantages?

Explain why priority inversion is a problem in real-time systems, illustrating your
answer with an appropriate execution trace. How could an application under
FreeRTOS overcome this problem?

"My RTOS application appears to have no liveness problems, therefore rate
monotonic analysis is unnecessary". Discuss.

Under FreeRTOS, state giving reasons what is the expected sleep time from a
single call of TaskDelay (n) ? Under precisely what circumstances, and why,
will use of TaskDelayUntil () lead to more accurate timing than
TaskDelay () ?

[4]

[4]

[4]

[4]

(4]

page 2 of 7

a) Contrast the merits of writing real-time application code under a set of prioritised
interrupts, or a set of prioritised tasks.

[4]

b) Using the FreeRTOS AP, describe, with pseudo-code, two ways in which
application code in a task could be synchronised with an interrupt, stating which
you would prefer to use and why.

[4]

c) A priority-scheduled real-time system consists of four jobs with the
characteristics shown in Figure 2.1 when run under CPU A.

@iy How would you run these jobs under an RTOS with prioritised tasks?

(ii) Can you state with certainty whether or not all tasks will meet their
deadlines, and if so will they, run under CPU A? Give reasons for your
answer. You may assume RTOS task-switching overheads are negligible.

(iii) You are asked to choose a speed-rating for a CPU to run these jobs.
What is the minimum speed, relative to A, that would guarantee all
deadlines met?

[6]

d) Inter-task communication is introduced to the system of Figure 2.1 which results
in the blocking specified in Figure 2.2 every job period. Answer the three parts of
d) for the new system. How would your answers change if earliest deadline first
scheduling were used?

[6]

b | Job Time | Job Period
50us 220us

lus Tus

100us 300us
125us 250us

Figure 2.1

=[N[<[x[g

Job | Blocking
Time

0

0

60us

Sus

<= | N[

Figure 2.2

Real-Time Operating Systems page 3 of 7

This question relates to the v4.0.5 FreeRTOS implementation of queues: source code for
FreeRTOS v4.0.5 is contained in the booklet RTOS Exam Notes.

a) Discuss in detail how FreeRTOS implements copying of message data and the
implications of this for the implementation, and the application programmer.

b) Explain the operation of xQueueReceive () when a task suspends waiting for
a message from a queue, and then returns with a message posted from an ISR
while the queue is locked . You may use the line numbers in the Exam Notes
booklet to identify source code in your answer.

c) Describe the operation of QueueSend () and QueueReceive () during the
sequence of events in Figure 3.1. What is problematic about FreeRTOS v4.0.5
behaviour under this sequence, and how could application code cope with this
behaviour?

d) Describe one way in which the FreeRTOS v4.0.5 queue implementation might be
improved to provide better behaviour under the case described in c).

Time Event

Initially | Task priorities: D>C>B> A

Two tasks A,B are waiting on messages from
empty queue Q1, task C is running.

1 Task C calls QueueSend (Q1)
2 Task D preempts C
3 Task D calls QueueReceive (Q1)
e Task D sleeps
5 Task B runs
Figure 3.1

4]

[4]

(6]

[6]

Real-Time Operating Systems page 4 of 7

This question relates to the FreeRTOS task list package implementation, source code for

which can be found in the booklet RTOS Exam Notes.

a)

b)

d)

Real-Time Operating Systems

Describe, with the aid of a suitable diagram, the data structures used in the
FreeRTOS task list package.

What are the operations needed to implement a RTOS ready list, and how are
these implemented by FreeRTOS using its task list package?

For each pointer field in the task list package, discuss what would be the
consequences, good or bad, for the FreeRTOS ready task list implementation if
the pointer field were omitted? Do not consider any other uses of task lists.

In FreeRTOS, detail for what purposes task lists are used, and discuss the merits
of using a general purpose task list package.

MicroC/OS-II implements task lists using a bit array, packed 8 bits per byte,
together with a 256 byte constant array to perform efficient selection of the most
significant bit set within a byte. Describe briefly how a set of tasks is represented
in this implementation. Discuss the advantages and disadvantages of this when
compared with FreeRTOS.

(2]

(6]

(4]

[4]

page 5 of 7

b)

d)

e)

Real-Time Operating Systems

Describe and contrast the merits of priority inheritance protocol (PIP) and ceiling
priority protocol (CPP) as solutions to priority inversion.

What conditions on the resource dependency graph are necessary and sufficient
for a system to be deadlocked? How, writing code at the application level, can
this situation be avoided?

Figure 5.1 describes three scenarios S1, S2, S3 in a real-time system. In each case
state, giving reasons, what you can deduce about whether deadlock, starvation, or
livelock might be responsible for the lack of progress.

Show how priority ceiling protocol (PCP) as defined in the Exam Notes
eliminates priority inversion.

Does PCP implement deadlock prevention, avoidance, or recovery?

Task Priority S1 S2 S3
A 4 P P P
B 3 P S B
C 2 B S ¥
D 1 P B B

P= making progress, S = running, making no progress, B=permanently blocked

Figure 5.1

[4]

(4]

[6]

(4]

[2]

page 6 of 7

Answer ONE only of the following questions. Credit will be given for answers which are

concise, clear, and complete.

(a)

(b)

(©)

(d)

(e)

Real-time Operating Systems normally have a single frequency "tick" interrupt.
What would be the consequences for RTOS implementation and usage if this
were replaced by a variable-time interrupt?

RTOS porting depends on both compiler and CPU architecture. Examine how
each of these can influence the code necessary for an RTOS port giving (possibly
hypothetical) examples, and a checklist of the issues that affect RTOS
implementation, together with how easy it is for an RTOS implementation to
incorporate their variability into configuration switches that do not require new
code to be written.

Discuss how the FreeRTOS API implements semaphores, and what are the merits
of more complex implementations that incorporate solutions to priority inversion.

Discuss ways in which an RTOS implementation could achieve faster task-level
latency, and to what extent this is dependent on specific hardware or compiler
features.

Event registers are often provided in an RTOS APL. List a set of features that
could be implemented in an event register APL. For each feature, summarise,
with reasons, the costs of implementation, and state with examples how it might
enable better application programming.

[20]

[END]

Real-Time Operating Systems page 7 of 7

Page 1 of 14

RTOS EXAM NOTES 2007

Page 2 of 14

Priority Ceiling Protocol definition

B. Defminon

Having dlustrated the basic wdea of the priority ceiling pro-
tocol and 1S properties, we now present its definition.

1) Jub J. which has the highest prionity among the jobs
ready o run, is assigned the processor, and let $° be the
semaphore with the highest priority ceiling of all semaphores
carrently locked by jobs other than job J Before job J en-
ters s critical section, it must first obtain the lock on the
semaphore § guarding the shared data structure. Job J will
be blocked and the lock on S will be denied. 1f the priority
ol job J s not higher than the priorty ceiling of semaphore
$° % In this case. job J s smid to be blocked on semaphore
S° and to be blocked by the job which holds the lock on §°.
Otherwise job J will obtain the lock on semaphore S and en-
ter its critical section. When a job J exits its critical section,
the binary secmaphore associated with the critical section will
be unlocked and the highest priority job, if any. blocked by
job J will be awakened.

2) A job J uses its assigned priority. unless it is in its critical
section and blocks higher priority jobs. If job J blocks higher
priority jobs, J inherits Py . the highest priority of the jobs
blocked by J. When J exits a critical scction. it resumes the
priority it had at the point of cntry into the critical scction.®
Priority inheritance is transitive. Finally, the operations of
priority inheritance and of the resumption of previous priority
must be indivisible.

3) A job J, when it does not attempt to enter a critical
section, can preempt another job Jy if its priority is higher
than the priority, inherited or assigned, at which job J is
executing.

L= TN R T R S

Page 3 of 14
Task.h

typedef wvoid * xTaskHandle;

#define taskYIELD() portYIELD()
#define taskENTER_CRITICAL{} portENTER_CRITICAL()
#define taskEXIT_CRITICAL{) portEXIT_CRITICAL()
#define taskDISABLE INTERRUPTS() portDISABLE INTERRUPTS()
#define taskENABLE_INTERRUPTS () portENABLE_INTERRUPTS ()
[r== o o - -
* TASK CREATION API
o e e */
signed portBASE TYPE xTaskCreate(pPdTASK_CODE pvTaskCode, const signed portCHAR * const pcName,

unsigned portSHORT usStackDepth, void *pvParameters,

unsigned portBASE TYPE uxPriority, xTaskHandle *pvCreatedTask);

void vTaskDelete(xTaskHandle pxTask):

void vTaskDelay(portTickType xTicksToDelay);

void vTaskDelayUntil(portTickType *pxPreviousWakeTime, portTickType xTimelIncrement);
unsigned portBASE TYPE uxTaskPriorityGet(xTaskHandle pxTask);

void vTaskPrioritySet(xTaskHandle pxTask, unsigned portBASE_TYPE uxNewPriority);
void vTaskSuspend(xTaskHandle pxTaskToSuspend);

void vTaskResume(xTaskHandle pxTaskToResume);

portBASE_TYPE xTaskResumeFromISR(xTaskHandle pxTaskToResume);

[*== ——— B - =

* SCHEDULER CONTROL

void vTaskStartScheduler(void);

void vTaskEndScheduler(void);

void vTaskSuspendAll (void);

signed portBASE_TYPE xTaskResumeRAll(void);

portTickType xTaskGetTickCount(void);

unsigned portBASE TYPE uxTaskGetNumberOfTasks(void);

void vTaskPlaceOnEventList (xList *pxEventlList, portTickType xTicksToWait };
signed portBASE _TYPE xTaskRemoveFromEventList(const xList *pxEventList);
void vTaskCleanUpResources(void);

inline woid vTaskSwitchContext (void);

XTaskHandle xTaskGetCurrentTaskHandle(void);

Semaphr.c :

#define vSemaphoreCreateBinary(xSemaphore) { \
xSemaphore = xQueueCreate((unsigned portCHAR) 1, semSEMAPHORE QUEUE_ITEM_LENGTH); \
if(xSemaphore != NULL) \
{ \

xSemaphoreGive (xSemaphore); \
1 \
}
#define xSemaphoreTake(xSemaphore, xBlockTime) X
XQueueReceive ((xQueueHandle } xSemaphore, NULL, xBlockTime)
#define xSemaphoreGive(xSemaphore) xQueueSend((xQueueHandle) xSemaphore, NULL, semGIVE BLOCK TIME)
#define xSemaphoreGiveFromISR(xSemaphore, xTaskPreviouslyWoken) \

xQueueSendFromISR((xQueueHandle) xSemaphore, NULL, xTaskPreviouslyWoken)

TASK & SEMAPHORE API

Page 4 of 14
From Task.h - related to lists package

signed portBASE TYPE xTaskRemoveFromEventList(const xList *pxEventList)
{

tskTCB *pxUnblockedTCEB;

pPortBASE TYPE xReturn;

/* THIS FUNCTION MUST BE CALLED WITH INTERRUPTS DISABLED OR THE
SCHEDULER SUSPENDED. It can also be called from within an ISR. */

/* The event list is sorted in priority order, so we can remove the
first in the list, remove the TCB from the delayed list, and add
it to the ready list.

If an event is for a queue that is locked then this function will never
get called - the lock count on the queue will get modified instead. This
means we can always expect exclusive access to the event list here. */
pxUnblockedTCB = (tskTCB *) 1listGET OWNER OF HEAD ENTRY(pxEventList);
vListRemove(&(pxUnblockedTCB->xEventListItem));

if (uxSchedulerSuspended == (unsigned portBASE TYPE) pdFALSE)
{
vListRemove(&(pxUnblockedTCB->xGenericListItem));
prvAddTaskToReadyQueue (pxUnblockedTCB) ;

else

/* We cannot access the delayed or ready lists, so will hold this
task pending until the scheduler is resumed. */
vListInsertEnd((xList *) &(xPendingReadylist), &(pxUnblockedTCB->xEventListItem));

}

if (pxUnblockedTCB->uxPriority >= pxCurrentTCB->uxPriority)

{
/* Return true if the task removed from the event list has
a higher priority than the calling task. This allows
the calling task to know if it should force a context
switch now. */
xReturn = pdTRUE;

}

else

{
xReturn = pdFALSE;

}

return xReturn;

LIST PACKAGE

Page 5 of 14

List.h
/*
* Definition of the only type of object that a list can contain.
&/
struct xLIST ITEM
{
portTickType xItemValue; /*< The value being listed. In most cases this is
used to sort the list in descending order. */
volatile struct xLIST_ITEM * pxNext; /*< Pointer to the next xListItem in the list. */
volatile struct xLIST_ITEM * pxPrevious;/*< Pointer to the previous xListItem in the list. */
void * pvOwner; /*< Pointer to the object (normally a TCB) that contains the list item. */
void * pvContainer; /*< Pointer to the list in which this list item is placed (if any). */
}i
typedef struct xLIST ITEM xListItem; /* For some reason lint wants this as two separate definitions. */

struct xMINI LIST ITEM
{
portTickType xItemValue;
volatile struct xLIST_ITEM *pxNext;
volatile struct xLIST_ITEM *pxPrevious;
}i
typedef struct xMINI LIST ITEM xMinilistItem;

/*
* Definition of the type of queue used by the scheduler.
ol
typedef struct xLIST
{
volatile unsigned portBASE TYPE uxNumberOfItems;
volatile xListTItem * pxIndex; /* Used to walk through the list */
volatile xMiniListItem xListEnd; /* List item that contains the maximum possible item value */
} xList;

#define listSET_LIST ITEM OWNER(pxListItem, pxOwner) (pxListItem)->pvOwner = (void *) pxOwner
#define 1istSET_LIST_ITEM_VALUEl pxListItem, xValue) (pxListItem)->xItemValue = xValue
#define listGET_LIST_ITEM VALUE(pxListItem) ((pxListItem)->xItemValue)
#define listLIST IS EMPTY(pxList) ((pxList)->uxNumberOfItems == (unsigned portBASE TYPE) 0)
#define listCURRENT LIST LENGTH(pxList) ((pxList)->uxNumberOflItems)
#define listGET OWNER OF NEXT ENTRY(pxTCB, pxList)

/* Increment the index to the next item and return the item, ensuring */

/* we don't return the marker used at the end of the list, */

(pxList)->pxIndex = (pxList)->pxIndex->pxNext;

if((pxList)->pxIndex == (xListItem *) &((pxList)->xListEnd))

{
(pxList)=->pxIndex = (pxList)=->pxIndex->pxNext:

L

}
pxTCB = (pxList)->pxIndex->pvOwner

#define listGET_OWNER OF HEAD ENTRY(pxList) [(pxList->uxNumberOfItems != (unsigned POrtBASE _TYPE) 0) ?
((&(pxList->xListEnd))->pxNext->pvOwner) : [NULL))

#define listIS_CONTAINED WITHIN(pxList, pxListItem) ((pxListItem)->pvContainer == (void *) pxList)
void vListInitialise(xList *pxList);

void vListInitialiseItem(xListItem *pxItem);

void vListInsert(xList *pxList, xListItem *pxNewListItem);

void vListInsertEnd(xList *pxList, xListItem *pxNewListItem);

void vListRemove(xListItem *pxItemToRemove) ;

LIST PACKAGE

Page 6 of 14

List.c

#include <stdlib.h>
#include "FreeRTOS.h"
#include "list.h"

void vListInitialise(xList *pxList)
{
/* The list structure contains a list item which is used to mark the end of the list. To initialise
the list the list end is inserted as the only list entry. */
pxList->pxIndex = (xListItem *) &(pxList->xListEnd);

/* The list end value is the highest possible value in the list to ensure it
remains at the end of the list. */
pxList->xListEnd.xItemValue = portMAX DELAY;

/* The list end next and previous pointers point to itself so we know when the list is empty. */
pxList->xListEnd.pxNext = (xListItem *) &(pxList->xListEnd);
pxList->xListEnd.pxPrevious = (xListItem *) &(pxList->xListEnd);

pxList->uxNumberOfItems = 0;
1

void vListInitialiseItem(xListItem *pxItem)

{
/* Make sure the list item is not recorded as being on a list. */

pxItem->pvContainer = NULL;
}

void vListInsertEnd(xList *pxList, xListItem *pxNewListItem)

{
volatile xListItem * pxIndex;

/* Insert a new list item into pxList, but rather than sort the list, makes the new list item the last
item to be removed by a call to pvListGetOwnerOfNextEntry. This means it has to be the item
pointed to by the pxIndex member. */

pxIndex = pxlList->pxIndex;

pxNewListItem->pxNext = pxIndex->pxNext;
pxNewListItem->pxPrevious = pxList->pxIndex;

pxIndex->pxNext->pxPrevious = (volatile xListItem *) pxNewListItem;
pxIndex->pxNext = (volatile xListItem *) pxNewListItem;
pxList->pxIndex = (volatile xListItem *) pxNewListItem;

/* Remember which list the item is in. */
pxNewListItem->pvContainer = (void *) pxList;

(pxList->uxNumberOfItems)++;

LIST PACKAGE

Page 7 of 14
void vlistInsert(xList *pxList, xListItem *pxNewListItem)
{

volatile xListItem *pxIterator;
portTickType xValueOfInsertion;

/* Insert the new list item into the 1list, sorted in ullListItem order. */
xValueOfInsertion = pxNewlistItem->xItemValue;

/* If the list already contains a list item with the same item value then the new list item should be
placed after it. This ensures that TCB's which are stored in ready lists (all of which have the same
ulListItem value) get an equal share of the CPU. However, if the xItemValue is the same as the back
marker the iteration loop below will not end. This means we need to guard against this by checking

the value first and modifying the algorithm slightly if necessary. */
if(xValueOfInsertion == portMAX DELAY)
{
pxIlterator = pxList->xListEnd.pxPrevious;
}
else
{
for(pxIterator = (xListItem *) &(pxList->xListEnd);
pxIterator->pxNext->xItemValue <= xValueOfInsertion;
pxIterator = pxIterator->pxNext)
{

/* There is nothing to do here, we are just iterating to the wanted insertion position.

}
}

pxNewListItem->pxNext = pxIterator->pxNext;

pxNewListItem->pxNext->pxPrevious = (volatile xListItem *) pxNewlListItem;
pxNewlListItem->pxPrevious = pxIterator;
pxIlterator->pxNext = (volatile xListItem *) pxNewListItem;

/* Remember which list the item is in. This allows fast removal of the item later. */
pxNewListItem->pvContainer = (woid *) pxList;

[pxList->uxNumberOfItems)++;
}

void vListRemove(xListItem *pxItemToRemove)

xList * pxList;
pxItemToRemove->pxNext->pxPrevious = pxItemToRemove->pxPrevious;
pxItemToRemove->pxPrevious->pxNext = pxItemToRemove->pxNext;

/* The list item knows which list it is in. Obtain the list from the list item. */
pxList = ({ xList *) pxItemTcoRemove->pvContainer;

/* Make sure the index is left pointing to a valid item. */
if(pxList->pxIndex == pxItemToRemove)
{

pxList->pxIndex = pxItemToRemove->pxPrevious;

}

pxItemToRemove->pvContainer = NULL;
(pxList->uxNumberOfItems)--;

LIST PACKAGE

i

Page 8 of 14

300 Queue.h

301 typedef void * xQueueHandle;

;g% xQueueHandle xQueueCreate(unsigned portBASE TYPE uxQueuelength, unsigned portBASE TYPE uxItemSize);

;g; signed portBASE TYPE xQueueSend(xQueueHandle xQueue, const void * pvItemToQueue, portTickType xTicksToWait);
gg? signed portBASE TYPE xQueueReceive(xQueueHandle xQueue, void *pvBuffer, portTickType xTicksToWait) ;

ggg unsigned portBASE TYPE uxQueueMessagesWaiting(xQueueHandle xQueue);

311 void vQueueDelete(xQueueHandle xQueue);

312

313 signed portBASE TYPE xQueueSendFromISR(xQueueHandle pxQueue, const void *pvIitemToQueue, signed portBASE_TYPE
314 xTaskPreviouslyWoken) ;

315

316 signed portBASE_TYPE xQueueReceiveFromISR(xQueueHandle pxQueue, void *pvBuffer, signed portBASE_TYPE

317 *pxTaskWoken) ;

318

319 Queue.c

320

321 /e e e e e e ————

322 * PUBLIC LIST API documented in list.h

323 K e e e e e —————— —————k/

324

325 /* Constants used with the cRxLock and cTxLock structure members. */

326 #define queueUNLOCKED ((signed portBASE_TYPE) -1)

327

328 e

329 * Definition of the queue used by the scheduler.

330 * Ttems are queued by copy, not reference.

331 K

332 typedef struct QueueDefinition

333 {

334 signed portCHAR *pcHead; /*< Points to the beginning of the gqueue storage area. */

335 signed portCHAR *pcTail; /*< Points to the byte at the end of the gqueue storage area.

336 Once more byte is allocated than necessary to store the queue items,
337 this is used as a marker. */

338

339 signed portCHAR *pcWriteTo; /*< Points to the free next place in the storage area. */

340 signed portCHAR *pcReadFrom; /*< Points to the last place that a queued item was read from. */
341

342 xList xTasksWaitingToSend; /*< List of tasks that are blocked waiting to post onto this queue.
343 Stored in priority order. */

344 xList xTasksWaitingToReceive; /*< List of tasks that are blocked waiting to

345 read from this queue. Stored in priority order. */

346

347 unsigned portBASE_TYPE uxMessagesWaiting;/*< The number of items currently in the queue. */
348 unsigned portBASE_TYPE uxLength; /*< The length of the queue defined as the number

349 of items it will hold, not the number of bytes. */

350 unsigned portBASE_TYPE uxItemSize; /*< The size of each items that the queue will hold. */
351

352 signed portBASE TYPE xRxLock; /*< Stores the number of items received from the queue
353 (removed from the queue) while the queue was locked.
354 Set to queueUNLOCKED when the queue is not locked. */
355 signed portBASE TYPE xTxLock; /*< Stores the number of items transmitted to the queue
356 (added to the queue) while the gqueue was locked.

357 Set to gueueUNLOCKED when the gueue is not locked. */
358 } xQUEUE;

360

361 I

362 * Inside this file xQueueHandle is a pointer to a xXQUEUE structure.
363 * To keep the definition private the API header file defines it as a
364 * pointer to void.

365 */

366 typedef xQUEUE * xQueueHandle;

367

QUEUE PACKAGE

Page 9 of 14

368 i

369 * Unlocks a queue locked by a call to prvlLockQueue. Locking a gueue does not

370 * prevent an ISR from adding or removing items to the queue, but does prevent

in * an ISR from removing tasks from the queue event lists. If an ISR finds a

372 * queue is locked it will instead increment the appropriate queue lock count

3713 * to indicate that a task may require unblocking. When the gqueue in unlocked

374 * these lock counts are inspected, and the appropriate action taken.

375 L

376 static signed portBASE TYPE prvUnlockQueue(xQueueHandle pxQueue);

377

378 /*

379 * Uses a critical section to determine if there is any data in a queue.

380 *

381 * @return pdTRUE if the gueue contains no items, otherwise pdFALSE.

382 */

383 static signed portBASE TYPE prvIsQueueEmpty(const xQueueHandle pxQueue) ;

384

385 il

386 * Uses a critical section to determine if there is any space in a queue.

387 *

388 * @return pdTRUE if there is no space, otherwise pdFALSE;

389 74

390 static signed portBASE TYPE prvIsQueueFull(const xQueueHandle pxQueue) ;

391

392 Pk

393 * Macro that copies an item into the queue. This is done by copying the item

394 * byte for byte, not by reference. Updates the gqueue state to ensure it's

395 * integrity after the copy.

396 */

397 #define prvCopyQueueData(pxQueue, pvItemToQueue) \
398 { X
399 memcpy ((void *) pxQueue->pcWriteTo, pvItemToQueue, (unsigned) pxQueue->uxItemSize); \
400 ++(pxQueue->uxMessagesWaiting): A\
401 pxQueue->pcWriteTo += pxQueue->uxltemSize; \
402 if(pxQueue->pcWriteTo >= pxQueue->pcTail) \
403 { \
404 pxQueue->pclWriteTo = pxQueue->pcHead; \
405 } \
406 }

407

408 /*

409 * Macro to mark a gueue as locked. Locking a gueue prevents an ISR from accessing the gueue event lists.
410 £/

411 #define prvLockQueue(pxQueue) \

412 { \

413 taskENTER_CRITICAL(); \

414 ++(pxQueue->xRxLock); \

415 ++(pxQueue->xTxLock); \

416 taskEXIT_CRITICAL(); \

417 }

418 /* e ettt TP

419 * PUBLIC QUEUE MANAGEMENT API documented in queue.h

420 A e e e e e - —/

421

422 xQueueHandle xQueueCreate(unsigned portBASE TYPE uxQueuelLength, unsigned PortBASE TYPE uxItemSize)
423 {
424 XQUEUE *pxNewQueue;

425 size_t xQueueSizeInBytes;

426

427 /* Allocate the new queue structure. */

428 if(uxQueuelength > (unsigned portBASE_TYPE) 0)

429 {

430 pxNewQueue = (XQUEUE *) pvPortMalloc(sizeof(xQUEUE));

431 if(pxNewQueue != NULL)

432 {

433 /* Create the list of pointers to gqueue items. The queue is one byte

434 longer than asked for to make wrap checking easier/faster. */

435 xQueueSizeInBytes = (size_t) (uxQueuelength * uxItemSize) + (size £t) 1;
436

437 pxNewQueue->pcHead = (signed portCHAR *) pvPortMalloc(xQueueSizeInBytes);
438 if(pxNewQueue->pcHead != NULL)

439 {

440 /* Initialise the queue members as described above where the

441 queue type is defined. */

442 pxNewQueue->pcTail = pxNewQueue->pcHead + (uxQueueLength * uxItemSize);
443 pxNewQueue->uxMessagesWaiting = 0;

444 pxNewQueue->pcWriteTo = pxNewQueue->pcHead;

445 pxNewQueue->pcReadFrom = pxNewQueue->pcHead + ((uxQueuelength - 1) *
446 uxItemSize);

447 pxNewQueue->uxLength = uxQueueLength;

448 pxNewQueue->uxItemSize = uxItemSize;

449 pxNewQueue->xRxLock = gqueueUNLOCKED;

450 pxNewQueue->xTxLock = queueUNLOCKED;

QUEUE PACKAGE

Page 10 of 14
451
452 /* Likewise ensure the event queues start with the correct state. */
453 vListInitialise(&(pxNewQueue->xTasksWaitingToSend));
454 vListInitialise(&(pxNewQueue->xTasksWaitingToReceive));
455
456 return pxNewQueue;
457 }
458 else
459 {
460 vPortFree(pxNewQueue);
461 }
462 }
463 }

465 /* Will only reach here if we could not allocate enough memory oOr no memory

466 was required. */

467 return NULL;

468 }

469

470 signed portBASE TYPE xQueueSend(xQueueHandle pxQueue, const void *pvItemToQueue, portTickType xTicksToWait)
471 {

472 signed portBASE_TYPE xReturn;

473

474 /* Make sure other tasks do not access the queue. */

475 vTaskSuspendAll () ;

476

477 /* Make sure interrupts do not access the queue event list. */

478 prvLockQueue (pxQueue)

479

480 /* If the queue is already full we may have to block. */

481 if(prvIsQueueFull({ pxQueue))

482 {

483 /* The queue is full - do we want to block or just leave without

484 posting? */

485 if(xTicksToWait > (portTickType) 0)

486 {

487 /* We are going to place ourselves on the xTasksWaitingToSend event list, and will get woken should
488 the delay expire, or space become available on the gueue. As detailed above we do not require mutual
489 exclusion on the event list as nothing else can modify it or the ready lists while we have the

490 scheduler suspended and gueue locked.

491

492 It is possible that an ISR has removed data from the queue since we checked if any was available. If
493 this is the case then the data will have been copied from the queue, and the queue variables updated,
494 but the event list will not yet have been checked to see if anything is waiting as the queue is

495 locked. */

496 vTaskPlaceOnEventList(&(pxQueue->xTasksWaitingToSend), xTicksToWait):

497

498 /* Force a context switch now as we are blocked. We can do this from within a critical section as the
499 task we are switching to has its own context. When we return here (i.e. we unblock) we will leave the
500 critical section as normal.

501

502 It is possible that an ISR has caused an event on an unrelated and unlocked queue. If this was the
503 case then the event list for that queue will have been updated but the ready lists left unchanged -
504 instead the readied task will have been added to the pending ready list. */

505 taskENTER CRITICAL();

506 {

507 /* We can safely unlock the queue and scheduler here as interrupts are disabled. We must not yield
508 with anything locked, but we can yield from within a critical section.

509

510 Tasks that have been placed on the pending ready list cannot be tasks that are waiting for events on
511 this gueue. See in comment xTaskRemoveFromEventList(). */

512 prvUnlockQueue (pxQueue);

513

514 /* Resuming the scheduler may cause a yield. If so then there

515 is no point yielding again here. */

516 if(!xTaskResumeAll ())

517 {

518 taskYIELD():

519 }

520

521 /* Before leaving the critical section we have to ensure exclusive access again. */

522 vTaskSuspendRAll();

523 prvLockQueue (pxQueue);

524 }

525 taskEXIT CRITICAL();

526 }

527 }

528

529 /* When we are here it is possible that we unblocked as space became available on the queue.

530 It is also possible that an ISR posted to the gqueue since we left the critical section, so it may be
531 that again there is no space. This would only happen if a task and ISR post onto the same queue. */
532 taskENTER CRITICAL();

533 {

QUEUE PACKAGE

534
535
536
537

539
540
541
542

544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

588
589
590
591
592
593
594
595

597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614

}

Page 11 of 14
if(pxQueue->uxMessagesWaiting < pxQueue->uxLength)
{
/* There is room in the queue, copy the data into the queue. */
prvCopyQueueData(pxQueue, pvItemToQueue);
XReturn = pdPASS;

/* Update the TxLock count so prvUnlockQueue knows to check for
tasks waiting for data to become available in the queue. */
++(pxQueue->xTxLock };
}
else
{
xReturn = errQUEUE_FULL;
}

}
taskEXIT CRITICAL();

/* We no longer require exclusive access to the queue. prvUnlockQueue will remove any tasks suspended
on a receive if either this function or an ISR has posted onto the queue. */
if(prvUnlockQueue(pxQueue))
{
/* Resume the scheduler - making ready any tasks that were woken by an event while the scheduler was
locked. Resuming the scheduler may cause a yield, in which case there is no point yielding again
here. */

if(!xTaskResumeAll())

{

taskYIELD();

}
}
else
{
/* Resume the scheduler - making ready any tasks that were woken
by an event while the scheduler was locked. */

xTaskResumeRAll () ;
}

return xReturn;

signed portBASE TYPE xQueueSendFromISR(xQueueHandle pxQueue, const void *pvitemToQueue, signed portBASE TYPE
xTaskPreviouslyWoken)

/* similar to xQueueSend, except we don't block if there is no room in the queue. Also we don't
directly wake a task that was blocked on a queue read, instead we return a flag to say whether a
context switch is required or not (i.e. has a task with a higher priority than us been woken by this
post). */
if (pxQueue->uxMessagesWaiting < pxQueue->uxLength)
{

prvCopyQueueData(pxQueue, pvItemToQueue):

/* If the queue is locked we do not alter the event list. This will
be done when the queue is unlocked later. */
if(pxQueue->xTxLock == queueUNLOCKED)
{
/* We only want to wake one task per ISR, so check that a task has
not already been woken. */
if(!xTaskPreviouslyWoken)
{
if(!1istLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToReceive)))
{
if(xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive))
!= pdFALSE)
{
/* The task waiting has a higher priority so record that a
context switch is required. */
return pdTRUE;

}
else
{
/* Increment the lock count so the task that unlocks the gueue
knows that data was posted while it was locked. */
++(pxQueue->xTxLock);
}
}

return xTaskPreviouslyWoken;

QUEUE PACKAGE

Page 12 of 14

615 signed portBASE_TYPE xQueueReceive(xQueueHandle pxQueue, void *pvBuffer, portTickType xTicksToWait)
616 {

617 signed portBASE_TYPE xReturn;

618

619 /* This function is very similar to xQueueSend(). See comments within
620 xQueueSend () for a more detailed explanation.*/

621

622 /* Make sure other tasks do not access the gueue. */

623 vTaskSuspendAll () ;

624

625 /* Make sure interrupts do not access the queue. */

626 prvlLockQueue (pxQueue };

627

628 /* 1f there are no messages in the gueue we may have to block. */

629 if{ prvIsQueueEmpty(pxQueue))

630 {

631 /* There are no messages in the gueue, do we want to block or just leave with nothing? */
632 if(xTicksToWait > (portTickType) 0)

633 {

634 vTaskPlaceOnEventList (&(pxQueue->xTasksWaitingToReceive), xTicksToWait);
635 taskENTER CRITICAL();

636 {

637 prvUnlockQueue (pxQueue);

638 if(!xTaskResumeAll())

639 {

640 taskYIELD();

641 }

642

643 vTaskSuspendall () ;

644 prvLockQueue (pxQueue);

645 }

646 taskEXIT CRITICAL ()2

647 }

648 }

649

650 taskENTER_CRITICAL():

651 {

652 if(pxQueue->uxMessagesWaiting > (unsigned portBASE TYPE) 0)
653 {

654 pxQueue->pcReadFrom += pxQueue->uxItemSize;

655 if (pxQueue->pcReadFrom >= pxQueue->pcTail)

656 {

657 pxQueue->pcReadFrom = pxQueue->pcHead;

658 }

659 -=(pxQueue->uxMessagesWaiting);

660 memcpy ((void *) pvBuffer, (void *) pxQueue->pcReadFrom,
661 (unsigned) pxQueue->uxItemSize);
662

663 /* Increment the lock count so prvUnlockQueue knows to check for
664 tasks waiting for space to become available on the queue. */
665 ++(pxQueue->xRxLock);

666 xReturn = pdPASS;

667 }

668 else

669 {

670 xReturn = pdFAIL;

671 }

672 }

673 taskEXIT CRITICAL():

674

675 /* We no longer require exclusive access to the queue. */

676 if{ prvUnlockQueue(pxQueue))

677 {

678 if(!xTaskResumeAll())

679 {

680 taskYIELD() ;

681 }

682 }

683 else

684 {

685 xTaskResumeAll () ;

686 }

687

688 return xReturn;

689 }

690

QUEUE PACKAGE

691
692
693
694
695
696
697
698
699
700
701
702
703
704
705

707
708
709

711
712
713
714
715
716
717
718
719

745

748
749
750
751
752
753
754
755
756
757
758
759
760
761
762

Page 13 of 14
signed portBASE TYPE xQueueReceiveFromISR(xQueueHandle pxQueue, void *pvBuffer, signed portBASE _TYPE
*pxTaskWoken)

{
signed portBASE TYPE xReturn;

/* We cannot block from an ISR, so check there is data available. */
if(pxQueue->uxMessagesWaiting > (unsigned portBASE TYPE) 0
{

/* Copy the data from the queue. */

pxQueue->pcReadFrom += pxQueue->uxItemSize;

if(pxQueue->pcReadFrom >= pxQueue->pcTail)

{

pxQueue->pcReadFrom = pxQueue->pcHead;

}

=={ pxQueue->uxMessagesWaiting);

memcpy((void *) pvBuffer, (void *) pxQueue->pcReadFrom,

(unsigned) pxQueue->uxItemSize);

/* If the queue is locked we will not modify the event list. Instead we update the lock count
so0 the task that unlocks the gqueue will know that an ISR has removed data while the queue was
locked. */
if(pxQueue->xRxLock == queueUNLOCKED)
{
/* We only want to wake one task per ISR, so check that a task has not already been woken. */
if({ !(*pxTaskWoken))
{
if(!1istLIST_IS EMPTY(&(pxQueue->xTasksWaitingTcSend }))
{
if(xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToSend))
!= pdFALSE)
{
/* The task waiting has a higher priority than us so
force a context switch. */
*pxTaskWoken = pdTRUE;
}

1

else

{

/* Increment the lock count so the task that unlocks the queue
knows that data was removed while it was locked. */
++(pxQueue->xRxLock);

xReturn = pdPASS;

}
else

{
}

xReturn = pdFAIL;

return xReturn;

}

unsigned portBASE _TYPE uxQueueMessagesWaiting(xQueueHandle pxQueue)

{
unsigned portBASE_TYPE uxReturn;

taskENTER CRITICAL();
uxReturn = pxQueue->uxMessagesWaiting;
taskEXIT CRITICAL();

return uxReturn;

}

void vQueueDelete(xQueueHandle pxQueue)
{
vPortFree (pxQueue->pcHead);
vPortFree | pxQueue);

QUEUE PACKAGE

763
764
765
766

768
769
770
771

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

804
805
806
807

809
810
811
812
813
814
815
816
817
818
819
820
821
822

824
825

827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

Page 14 of 14

static signed portBASE TYPE prvUnlockQueue(xQueueHandle

{
signed portBASE _TYPE xYieldRequired = pdFALSE;

PxQueue)

/* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED. */

/* The lock counts contains the number of extra data items placed or
removed from the queue while the queue was locked. When a queue is
locked items can be added or removed, but the event lists cannot be

updated. */
taskENTER_CRITICAL();
{

-—(pxQueue->xTxLock);

/* See if data was added to the gqueue while it was locked. */

if(pxQueue->xTxLock > queueUNLOCKED)

{
pxQueue->xTxLock = queueUNLOCKED;

/* Data was posted while the queue was locked. Are any tasks
blocked waiting for data to become available? */

if(!1istLIST IS EMPTY(&(pxQueue->xTasksWaitingToReceive))

{

/* Tasks that are removed from the event list will get added to
the pending ready list as the scheduler is still suspended. */
if(xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToReceive)

{

/* The task waiting has a higher priority so record that a

context switch is required. */
xYieldRequired = pdTRUE;

}
}
taskEXIT_CRITICAL():

/* Do the same for the Bx lock. */
taskENTER_CRITICAL();

{
--{ pxQueue->xRxLock);

if(pxQueue->xRxLock > gqueueUNLOCKED)

{
pxQueue->xRxLock = gueueUNLOCKED;

if(!1istLIST_IS_EMPTY(&(pxQueue->xTasksWaitingToSend)))

{

if(xTaskRemoveFromEventList(&(pxQueue->xTasksWaitingToSend)

{

xYieldRequired = pdTRUE;

}

}

1
taskEXIT CRITICAL();

return xYieldRequired;
}

static signed portBASE TYPE prvIsQueueEmpty(const xQueueHandle pxQueue)

{
signed portBASE TYPE xReturn;

taskENTER CRITICAL();

xReturn = (pxQueue->uxMessagesWaiting == (unsigned portBASE TYPE) 0);

taskEXIT CRITICAL();

return xReturn;
}

static signed portBASE TYPE prvIsQueueFull(const xQueueHandle pxQueue)

{
signed portBASE TYPE xReturn;

taskENTER_CRITICAL();
xReturn = (pxQueue->uxMessagesWaiting ==
taskEXIT CRITICAL();

return xReturn;

QUEUE PACKAGE

pxQueue->uxLength) ;

)

)

) != pdFALSE

!= pdFALSE)

20‘6'7

FOUR Questions in 180 minutes => 45 min per question

Solutions

Answer codes: A=analysis, B=bookwork, D=design, C= new application of
learnt theory

1. This question tests whether the students understand some of the issues when writing
application code for RTOS

a)

taskENTER_CRITICALY()
/*access resource*/
taskEXIT CRITICAL()

XQueueHandle sema;
vSemaphoreCreateBinary(sema);
xSemaphoreTake(sema);
/*access resource*/

xSemaphoregive(sema);

[3B]

b)

(1) interrupt disable [ENTER/EXIT]_CRITICAL_SECTION() as above
Benefit: fast, no priority inversion

disadvantage: may increase global interrupt latency

(2) scheduler locking:

vTaskSuspendAll()

[*critical section*/

vTaskResumeAll()

Benefit: allows interrupts while locked, no priority inversion

Disadvantage: can't be used to share resource with interrupt

Real-Time Operating Systems page 1 of 8

[4B]

c) PI can increase the delay of a high priority task when it is sharing a resource with
a low priority task. Specifically:

LPT runs and takes S
HPT runs & waits on S
LPT continues

MPT preempts LPT
MPT blocks

LPT runs and gives S
HPT takes S

In this trace any number of tasks with priority greater than LPT and less than
HPT can delay progress of HPT

Mend the problem by implementing priority inheritance protocol (PIP) using
FreeRTOS dynamic task priorities:

vTaskPrioritySet()
uxTaskPriorityGet()

increase the priority of LPT to that of HPT for the length of time that LPT holds
S and HPT is waiting on S
[4B]

d) Strictly speaking, CPU starvation (which may happen if RMA analysis does not
guarantee deadlines) is a form of starvation and therefore liveness problem.
However just because it does not happen, it does not mean that it is guaranteed
not to happen given future minor changes in conditions or code. therefore RMA
is still useful because it guarantees no CPU starvation (though does not say

anything about other liveness problems).
[4A]

e) Single call results in wait for n clock ticks => time of min(0, (n-1))*tick-time to
n*tick-time

TaskDelayUntil is useful for repeated delays where the time from one call to the
next is critical. This will be precise providing the total task (+ higher priority
task) execution time is less than the specified delay. This is better than
TaskDelay() — which will go wrong if the above total time is greater than one
time-tick.
[4A]

Real-Time Operating Systems page 2 of 8

Real-Time Operating Systems page 3 of 8

a)
Interrupts: no RTOS required => more compact code, faster switching.

Disadvantages: Prioritised interrupts are required. Code must be written as
separate ISRs with no state preserved in ISR between calls. RTOS
communication & synchronisation primitives can't be used.

RTOS: reverse of above.
[4B]

b) EITHER use a binary semaphore, posting from the ISR and taking the semaphore
in the task to implement wait for next interrupt.:

SemaphoreGiveFromISR(sema)--> SemaphoreTake(sema)
OR use task suspend resume:

vTaskSuspend(0) — will suspend current task
xtaskResumeFromISR(taskH) — will restart task from ISR

Note task handle must be stored after task creation.

The suspend/resume solution does not require a semaphore (queue) and is
therefore both more compact and faster.

[4B/A]

) Y.X,W.Z (decreasing priority order)
(ii) Utilisation = 50/220+1/7+30/300+40/250=0.63
RMA limit n(2”(1/n)-1) for 4 tasks = 0.757
RMA theorem => all tasks meet deadlines with certainty

(ii1) 0.63/0.757=0.83 that have A is minimum speed
[6C]

d) Add blocking time to CPU time so: (i) no change, (ii)+0.22=> RMA conditions
not met. CANT TELL whether deadlines will be met. (iii) 0.85/0.757= 1.12X
speed of A. With EDF scheduling, assuming CPU+blocking is less than 100%,
can guarantee all deadlines. speed 0.85/1 would be minimum.
[6C]

Real-Time Operating Systems page 4 of 8

This question tests whether students understand the implementation of RTOSes by examining in
detail the behaviour of some real (but not ideal, and hence now replaced) code.

This question relates to the v4.0.5 FreeRTOS implementation of queues: source code for
FreeRTOS v4.0.5 is contained in the booklet RTOS Exam Notes.

a)

b)

c)

Discuss in detail how FreeRTOS implements copying of message data and the

implications of this for the implementation, and the application programmer.
[4B]

line 629 IF is true since Q is empty. Line 634 If is true since timeout must be non-zero for
task to wait. Line 640 - task suspends.

ISR posts message and rewakes task, which continues from line 640.

643: scheduler is locked

Line 652 test is true, since message is waiting to be picked up

Message is extracted from queue (with possible read pointer wrap-around (line 657)
Line 665: Lock count is incremented in case Q was previously full

666: set pdPass return value

668-671 skipped

678 — scheduler unlocked, causes no change of task

680 — taskYield() does not result in change of task.

return pdPass (set from 666)
[4A]

See below for details. Problem: task B returns early with a failure when it has not timed
out. Application code could check whether timeout was real and if not try again to
receive a message by calling QueueReceive() again with an adjusted timeout. This must

be implemented with a loop, since spurious wakeup can happen at any time.
[6A]

Time

Event Details

task C calls QueueSend(Q1) In QueueSend(), from prvUnlockQueue, B, the highest priority waiter, is awoken

but does not yet run

task D preempts C

task D calls QueueReceive(Q1) D finds the message that was posted in Q1, and returns immediately with this.

task D sleeps

[N -G (VORI

task B runs B runs inside QueueReceive and finds that no message is available, it returns with
a failure (as from timeout)

d)

Solution: Distinguish between a timeout wakeup and a (perhaps spurious) event
wakeup by checking timeout value (which is a local variable) and go back to
sleep if the latter has not elapsed. Can distinguish because the wakeup time can
be calculated on QueueReceive() entry and stored in local variable for reference.
[6D]

Real-Time Operating Systems page 5 of 8

4.

This question relates to the FreeRTOS task list package implementation, source code for
which can be found in the booklet RTOS Exam Notes.
a)
List header contains sub-structure
ListEnd and is pointed to by list nodes || NumberOf
items: 2 Dummy list
/—; index: ? node marks
(ListEnd end & start of
itemvalue itemvalue itemvalue {7 circular list
next - next - next
L previous " previous " previous
owner y owner
container4 / container 4
Fd } :
celt TCB includes List nodes
3 |83|2% | for Event & Generic lists
" ¥ §. g g2 as substructures
(2]
[2B]
b)
add task to ready list
delete task from ready list
find & remove highest priority task from ready list
move to next task (round-robin) of set of tasks of identical priority in ready list.
ready list is implemented as array of (circular) task lists, one for each priority. add &
delete task from task list functions are used as necessary. All tasks within one list are
same priority so ordering is not relevant, tasks are added to end of list (different from
start in the case that there are multiple tasks of same priority). List of traversed
continuously in case time-slicing is needed.
[4B]
c) next & previous. Could delete one of these to make singly-linked. Delete task
would take longer, other operations (except move to next task) would be quicker.
container — not needed for ready list, since know what it is
owner — not needed for ready list, since know offset between listitem node and
task TCB so can reconstruct this.
[6A]

Real-Time Operating Systems page 6 of 8

d) Used for ready list, suspended task list, delayed task list, overflow delayed task
list, event lists (two per message queue). General package considerably reduces
RTOS code size, however not all features are used in all cases, so separate code
would be slightly more efficient.

[4B]
-
e) Each separate priority is represented by one bit. Fixed number of priorities
allowed (e.g. 64) => 8 bytes needed for table. Must have unique task per priority.
Tasks are represented as in list by setting appropriate bit. This means that
dynamic priority would require changes to task lists (all of them containing the
task).
[4A]

Real-Time Operating Systems page 7 of 8

a) Both stop priority inversion from time that a HPT is waiting by ensuring task with lock
on resource is same priority as HPT. CPP requires static analysis of code (which may be
additional burden for programmer). It has advantage that low priority tasks will have high
priority whenever they lock the resource. this makes no difference to worst case HPT
delay. However it reduces average case HPT delay by making it less likely that another
lower priority task will have resource locked when HPT requests lock.
[4B]

b) A cycle in the graph <=> deadlock

This can be avoided by ordering resources and making sure all tasks claim shared

resources in the same (global) order. (resources can be released in any order).
[4B]

c) S1. only one task is blocked, so can't be deadlock. Task is blocked, so can't be livelock.
Must be starvation. Two higehr priority tasks must be hogging some resource.

S2. B,C are running & making no progress — they must be livelocked.

S3. B & D are blocked. B cannot be starved since only one higher prio task, hence it must
be deadlocked. D cannot be blocked because B must be deadlocked with D. Hence B,D
are deadlocked.

[6A]

d) Condition 2 of PCP means that any task locking a resource will inherit dynamically the
priority of any task waiting on the lock. Condition 3 means that this will allow

preemption if necessary of a lower priority task.
[4A]

€) Prevention, since it constrains resource lockers to wait until such time as deadlock is no
longer possible.

[2A]

This question tests whether the student have deeper understanding of some
aspect of the topic. All students have RTOS implementation coursework relating
to one of these five options. The given question tests whether they understand the
wider issues relating to their implementation. The answers will depend on the

precise coursework topic.
[20]

Real-Time Operating Systems page 8 of 8

