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MODELLING AND CONTROL OF MULTIBODY MECHANICAL SYSTEMS

1. Consider a pendulum on a cart moving on a horizontal plane, as depicted in Figure 1.1.
Let M be the mass of the cart, and assume that the pendulum can be modelled as a
massless rod of length L = 1 with a mass M (equal to the mass of the cart) attached at
its end. Assume the cart is subject to a force F, and ¢ and g2 are as in the figure.
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Figure 1.1 The pendulum on a cart.

a) Compute the kinetic and potential energy of the system, and the internal Hamil-
tonian Ho(q, p)- [ 4 marks ]

b) Assuming that the coupling Hamiltonian Hy(q) is

Hi(q) = —sing1 +q2,

write the system in Hamiltonian form. [ 4 marks ]
) Compute the natural output y of the system. [ 2 marks ]
d) Consider a damping injection control law, i.e. F = —ky.
i) Compute the time derivative of the internal Hamiltonian Ho (g, p) along
the trajectories of the closed-loop system. [ 4 marks ]
ii) Consider the closed loop-system and assume that y(t) = 0 for all 7.
Compute all trajectories of the system that are consistent with this con-
straint.
(Hint: assume that y(¢) = 0 implies p>(f) =0.) [ 4 marks ]
iii) Explain, from a physical point of view the result. [ 2 marks ]
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Consider a frictionless, rigid, two-limb pendulum, as depicted in Figure 2.1, with control
inputs u; and uy. Let q; denote the angle of the lower limb with respect to the vertical
axis and g, denote the angle between the upper limb and the direction of the lower limb.
Suppose that both limbs are of unit length and that g = [g143].

Figure 2.1 The double pendulum.

Assume that the kinetic energy of the system is

I, .
T =54"M(9)d;
where
_ | 3+2cosg; 1+cosgy
M(q) = [ 1+cosqy 1 )

and the potential energy is
V(q) = g(2cos g1 +cos (g1 +2)),

where g denotes the gravitational acceleration.

Finally, let the interaction Hamiltonians be

Hi(Q=q1 H(q9)=q.

a) Write the internal Hamiltonian Hy(q, p) and the Hamiltonian equations of mo-

tion. [ 6 marks ]
b) Show that it is possible to asymptotically stabilize the up-up position (i.e. the
equilibrium g; = g2 = 0) of the pendulum using the first method of Lyapunov
and only the control u;. [ 4 marks ]
c) Show that it is possible to asymptotically stabilize the down-down position (i.e.
the equilibrium g; = 7, g; = 0) of the pendulum using both controls and a
damping injection controller. [ 4 marks ]

d) Show that it is possible to asymptotically stabilize the up-up position of the
pendulum using the shaping function method and both controls. [ 6 marks ]

Modelling and control of multibody mechanical systems

2/6



3 As shown in Figure 3.1, a car of mass m is free to move on a horizontal plane under
the influence of two (tyre) forces, one in the longitudinal and the other in the lateral
direction with respect to the car, and a moment normal to the plane. The moment of
inertia of the car about the axis normal to the plane and passing through the centre of
mass, C, is 1.

Fia

Figure 3.1 Simple car.

A moving Cartesian coordinate system with unit vectors i’ and j' is used to analyse the
motion of the car. This coordinate system has a fixed origin O but it rotates by an angle
W so that it has the same orientation as the car fixed axes (shown with dashed lines on
the car).

a) The coordinates of the centre of mass, C, in the moving reference frame are
(¥,¥'). Give the position vector, r, of C in the moving coordinate system. [2 ]

b) Hence derive the velocity vector, 7, of C using the moving coordinate system.

[4]
c) Assume that the longitudinal speed of the car, vy, is fixed.

i) Show that
£~y ¥=y =0
[5]

i) Express the acceleration vector, 7, of the car centre of mass using the
moving reference system, in terms of the longitudinal speed, vy, the
lateral speed, vy, V. [5]
iii) Hence derive the equations of motion of the car using the moving
reference system. [4]
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4. A wheel rotates about its spin axis with a fixed angular velocity €. The spin axis is
then rotated about the vertical direction with a fixed angular velocity £,. The system is
shown in Figure 4.1.
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Figure 4.1 Wheel rotating about its spin axis and about the vertical direction.

The wheel is assumed to be cylindrical and to have uniform density. The spin moment
of inertia of the wheel is ;. The moments of inertia about two mutually perpendicular
axes passing through the centre of mass and which are both perpendicular to the spin
axis are I, and L.

a) What is the relation between I, and I,,? Are the three axes associated with
I, Ly, I, principal axes? Why? [5]
b) 0 is the angle of rotation about the spin axis direction. What is the relation
between 6 and Q,? [1]
c) Write the angular momentum vector, H, using a body fixed rectangular coordi-
nate system. [5]
d) Calculate the moment that is required to sustain the motion of the wheel.

i) Show that its magnitude is
1,2,Q,

[6]
i) What is the direction of this moment? [3]
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5. A point mass is constrained to move on a massless hoop of radius a fixed in a vertical
plane that is rotating about the vertical with constant angular speed @.

a) Treating the constraint of the hoop on the particle by the method of Lagrange
multipliers, obtain the Lagrange equations of motion assuming the only external
force arises from gravity. Use spherical coordinates in which the velocity vector
of the particle is given by

= re,+rfcospeg +rhey.
[10]

b) Write the forces of constraint exerted by the hoop on the point mass. [4]

c) Show that if @ is greater than a critical value @y, there can be a solution in
which the particle remains stationary on the hoop at a point other than at the
bottom, but that if @ < @y, the only stationary point for the particle is at the
bottom of the hoop. What is the value of wy? [6]

Modelling and control of multibody mechanical systems
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a)

b)

Consider a helicopter blade of mass m that is attached onto a rotor of negligible
mass that rotates with a fixed angular speed @ about its centre axis. The blade
is allowed to flap relative to the rotor as shown in Figure 6.1.
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Figure 6.1 A helicopter rotor with one blade.

The distance of the point of attachment of the blade onto the rotor from the
centre axis of the rotor is e, and the distance along the blade from the blade
attachment point to the centre of mass of the blade, C, is f. The three principal
moments of inertia of the blade about the centre of mass are Iy, Iy and I;. I is
with respect to an axis along the blade, I, with respect to an axis normal to the
plane of the diagram at the instant shown and 7, with respect to an axis which
is perpendicular to both the previous axes. The effect of gravity is neglected.

i) Write an expression for the kinetic energy of the system. [4]
ii) Show that the flapping equation of motion is

(I,,y+mf2)f3' + (I; — I ) @* sin B cos B +mf(e+ feosB)w?sinf = 0.

[6]

Derive Euler’s equation of motion from the Lagrange equation of motion for
the generalised coordinate ¢ (the angle of the last rotation in the yaw-pitch-roll
Euler angle rotation sequence). [10]
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Question 1

a) To compute the kinetic energy of the system note that the positions pys and py, of the
center of mass of the cart and of the end of the pendulum on a cartesian plane with
z-axis parallel to the go axis and the z-axis directed upward are given by (recall that
Li=1)

pum = (22,0) Pm = (g2 +singi,cosq1).
As a result the kinetic energy is given by (recall that M = m)

1 - I .
K= gmllpul?+ 5mlpn]

1 . 1 ) ) 9 .
— imqg + §m ((qz + ¢y cos q1)2 + q% sin? ql)

hence
Ly A 5 @ 1 cos q1 Q1
K—-z—qu—2m[g1 QQ][cosql 2 Hqg :

The potential energy is only due to the pendulum and it is given by (recall that L = 1)
V =mgcosq.

The internal Hamiltonian is

Ho(q,p) = [Pl P2 ]M‘l [ Pl } + mg cos q1.

p2

[

b) The Hamiltonian equations of motion are
g=M"p

and ! i
o(p' M~
(p p) 4

i
) dq

0

mg sin q1 } & [ —Ccosq }u

c¢) The natural output is

_ 0Hy (8[1’1)’ _ lpg(cos2 q1+1)—3picosq
~ Op T m 2 — cos? q1 '

dq
d) The time derivative of the internal Hamiltonian with the given damping injection con-
troller is Hy = —ky?. Note that y = 0 implies u = 0 and

CoS 1

P2 = 9 os? q + Tl
Replacing this in the the Hamiltonian equations of motion yields

1 1 ; 1 cosqp

gl:%coszq1+1p1 qrZzacos?ql+liwl

1



and .
cosqising; o

(1+cos?qy)2" !

As suggested we assume that ps = 0, hence we have two possibilities. Either p; = 0 or
cosq; = 0.

p1 = sinqigm — po=0.

If py = 0 we have ¢; = 0 and ¢ = 0. Moreover p; = 0 implies p; = 0, which implies
that sing; = 0. Hence ¢ = 0 or ¢y = 7. From a physical point of view the trajectory
obtained above describes the cart with the pendulum aligned along the vertical (upward
or downward) and with the cart stationary at some location that we cannot determine.

If cos g1 = 0 then ¢; = +7/2 which implies ¢; = 0. As a result, p; = 0, and this implies
p1 = 0. However, in this case p; = gmsinq; # 0, which is a contradiction. This means
that y = 0 does not imply cosq; = 0.



Question 2

a)

The Hamiltonian is

1 -
H(g,p,u) = 5p'M(q) 'p+V(g) — q1u1 — qaua,
and the Hamiltonian equations of motion are
g=M()'p

and
__0@M™p) _ g| 2Ena+ sin(qr +¢2) |, | w
dq sin(q1 + ¢2) ug |’

The system linearized around the up-up position is described by the equations

0 0 1 =2 0
- 0 0 -2 5 0
Oy = 3 —g 0 0 0z + 1 Oy-
-g —g 0 0 0
The controllability matrix is
0 1 0 -3¢
0 -2 0 79
— 2 3 —

C=[B AB 4B A°B|=| 0 —g 0

0 0 g 0

and this has rank four. Hence the considered equilibrium is locally stabilizable using a
linear feedback control law.

The down-down position is a minimum of the potential energy. The damping injection

control law is described by
u=—kM(q)"'p.

The time derivative of the internal Hamiltonian along the closed-loop system is

Ho = —kp'M(q)*p = —k{q.
Hence the equilibrium is stable and p goes to zero. In addition p = 0 implies ¢ = 0 hence
all trajectories approach the equilibrium, which is therefore asymptotically stable.

To asymptotically stabilize the up-up position using the shaping function method we
have to show that it is possible to modify the potential energy, rendering the point
(q1,42) = (0,0) a local minimum, by means of a P-type control law. (Note that the
up-up position is a maximum of the potential energy.) Setting u = —Kgq yields a shaped
potential energy V described by

~ 1
V=V+§q'Kq.

Selecting K symmetric, positive definite and sufficiently large (for example K = kI,
with k£ > 1) results in a shaped potential energy with a minimum at the desired
equilibrium. Therefore, the application of a damping injection control law is such that
the up-up equilibrium is asymptotically stable.



Question 3

a) The position vector is simply

r= mfli.f_l_ yl’j!l

b) The derivatives of the unit vectors ¢/, j/ with respect to time are given by

c)

and

di’ .
E = 1»[).7'!
dj’ -,
o

Therefore by differentiation of the position vector, the velocity vector is

i)

i)

= (@ -y )i’ + ('Y + )

The forward speed of the car is the coefficient @’ — 3/%), of the unit vector 4’ in the
velocity vector expression, i.e.

vy =i — y"d:v.

v, is constant if v, = 0. Therefore, by differentiation of the above expression we
get

! )7 17

T —yy-yid=0.
The velocity vector can be written in terms of v, and vy as

7 =3 + vy

By differentiation of the above, the acceleration vector is

# =~y + (by + vah)j’.

The equation describing the motion of the centre of mass in the longitudinal di-
rection is

Flong = —mvy%b,

and in the lateral direction is
Flot = m(i’y o Uﬂ!})

Finally the equation describing the rotational motion of the car about the centre

of mass is )
N = Iy.

Notice that the longitudinal equation gives the force of constraint needed to keep
the forward speed fixed.



Question 4

a) I, = I; due to symmetry. The three axes are principal axes. The spin axis is in the
direction of the axis of symmetry and the wheel is a solid of revolution.

b) 6=0Q,.
¢) The angular momentum vector is

H = —I,Q,sin i’ + L, Q5" + Iz cos 0K’

d) The equation describing motion about the centre of mass is

dH
‘-“E-I-QXH:N. (1)

The first term on the left is the derivative of the angular momentum vector as seen
from the body fixed axes. It amounts to

dH

— = ~lasfy 008 604 — Lz 0y sin 66K'.

But 6 = €, and therefore

]
% = — Iz, (cos i’ + sin 6k").

The second term of equation 1 arises due to the rotation of the body fixed axes and it
amounts to

Qx H=
= (=, sin i’ 4+ Q5" + Qy cos Ok’) X (—IpoQy sin b3’ + I,y Q3" + L2y cos OK') =
= — 0, Qy cos0(Iyy — Inz)i’ + QS sin 0Lz — Iy )k

We add the two terms and we get

4
H ; :
% +Q x H = —I,,Q,Q,(cos i’ + sin 0k”).

Therefore, the moment needed to sustain the motion is
N = —1,,9,Qy(cos 6 + sin Ok').
i) The magnitude of this moment is
|N| = Iy 2y Q,

ii) and its direction is always perpendicular to both the spin axis and the vertical
direction.



Question 5

a) The kinetic energy of the system is
1 : .
T = §m(f2 + 1262 cos® ¢ + r2¢?),

and the potential energy is
V = mgrsin ¢.

(The centre of the hoop is taken as the zero potential energy point).

The system has two constraints
f 1=r—a= 0)

and
fo=0—-wt=0.

The Lagrangian function is given by
1 . .
L=T-V= §m(f~2 +720% cos® ¢ + r24*) — mgr sin ¢

For the first generalised coordinate, r, we have

d (0L oL ofi
E(E) —5'1')\]?—0.
But of
—)\15 = F,

where F is the force of constraint in the radial direction. Therefore

% (m#) — (mr6? cos® ¢ + mr¢® — mgsin ¢) = F},

or
mit — mrf? cos? ¢ — mré? + mgsing = F.

From the constraint equations we have # = # = 0 and § = w, § = 0. Therefore the

above equation gives the radial force of constraint as

2

F, = —maw®cos® ¢ — maqﬁz + mg sin ¢.

The Lagrangian equation for the second generalised coordinate, , gives

d (OL\ OL . Ofy
@t (59‘) 50 T2 =0
But
ofs
_/\ZW - NG:

where Ny is the moment of constraint about the vertical direction. The force of con-

straint in the eg direction is
Ny

Fy = :
. T COS @




Therefore

% (mrzé cos® (,ﬁ) = Fyrcos ¢,

or
2mri6 cos® ¢ + mr26 cos® ¢ — 2mr?0¢ cos ¢sin ¢ = Fyr cos ¢.

By making use of the constraint equations we get the second force of constraint as
Fy = —2mawqﬁrsin ¢.

The Lagrangian equation of the third generalised coordinate, ¢, will give us the equation

of motion:
4 (oL) _oL _,
at\ag) 99
or
d 2 242 .
= (mr (;5) — (—mr°6” cos ¢ sin ¢ — mgr cos ¢) = 0,
or

2mri + mr?é + mr?6” cos ¢ sin ¢ + mgr cos ¢ = 0.

By making use of the constraint equations the equation of motion reduces to

a&—l—awgcosqbsinqﬁ-{-goosq’):(l.

The forces of constraint F. and Fy are given above.

The particle remains stationary when é = 0. The last equation above shows that this
happens when
aw? cos psin g + gcos ¢ = 0,

or
cos ¢ (aw?sing + g) = 0.

When w = 0 the only way the above expression becomes zero is when cos ¢ = 0 or when
¢ = —90° which is the lowest point of the hoop. As w increases from zero the term in
the brackets above is possible to become zero for some value of ¢ when

aw? > g,
or
w> 2.
a
Therefore

.,\/5
wo =4/ —.
a



Question 6

Figure 1: A helicopter rotor with one blade.

a) i) The position vector of the centre of mass of the blade is
r=ei+ fi.
The angular velocity of the rotor fixed coordinate system is
Q =wk,
and the angular velocity of the blade fixed coordinate system is
Q' =wk+ 85
The velocity vector of the centre of mass is given by
F=eQxi+ fU xi =ewk x i+ f(wk+ Bj") xi =ewj’ + fwcos B’ — fBK,

since j’ is parallel to j. Therefore the kinetic energy is given by

1 : 1 1 . 1
T=s5m (e + foos B)w? + £28) + 5 laat? sin® B+ 51y + 5 Loat? cos® 6.

ii) The Lagrangian function of the system is L = T since there are no external forces.
The Lagrangian equation corresponding to the flapping freedom is

d(or)_oL_
dt\og) 98

(Iyyﬁ + mfg,éf) —(me2 sin 8 cos B—I,,w? sin (3 cos B—m(e+f cos /3)wa sin 3) = 0,

or

4
dt

or

(Lyy + mf2)5 + (Izz — I:,,.x)(.‘.r2 sin Bcos B+ mf(e+ fcos ﬁ)uﬁ sinfg = 0.



b) The angular velocities along the body fixed axes are given in terms of the Euler angles
as follows:
Qp = ¢—1sind
Qy = 0 cos ¢ + 1 cos fsin ¢
Oy = —0sing+ 9 cosf cos .
(Taken from the handout.) The kinetic energy of the rigid body is therefore

o I . 1 . ;
T = %rm@;» — sinB)® + 31y (608§ + ) cos5in )2 + 3 Lo (~Bsin g+ cos f os )

The Lagrangian is L = T" and the Lagrangian equation of motion corresponding to the
generalised coordinate ¢ is

d (0L oL

—|=|—5=N 'y

dt (3(;;) ¢
where N, is the external torque along the z’ axis. Evaluating the components of the
Lagrangian equation gives

oL i o
3¢ = lee(6 = ¥sind) = Iuslly,
e d P W o :
- (Im(qf) ) sine)) = Iyz(¢ — P sin @ — B cos ) = Iy,
The next term in the Lagrangian equation is
oL : . ) . ;
% = Iy (6 cos ¢ + 1 cos O sin @) (—0sin ¢ + 1 cos f cos ¢) +
+1I,,(—0sin ¢ + 1 cos 0 cos ¢)(—6 cos ¢ — 9 cos ' sin ),
or 3L
% = Ty QS — L2000y

Putting everything together we get
I.'.:..-':Q:c’ - Qy’gz’ (Iyy - Iz.z) = Ny,

which is the Euler equation that we are after.






