- 4 (a) What are the basic differences between angle and voltage stability?
 - (b) Describe briefly various types of oscillatory stability in the context of small signal stability is power systems?
 [5]

[5]

(c) The model of a single machine and infinite bus (SMIB) is given by

$$\frac{d \,\delta}{dt} = \left(\omega - \omega_{s}\right) \tag{4.1}$$

$$M \frac{d \,\omega}{dt} = P_{mech} - P_{max} \sin \delta - K_{D} \left(\omega - \omega_{s}\right) \tag{4.2}$$

Using P_{mech} as input and ω as output, obtain a linear state-space model in the standard form $\dot{X} = AX + Bu$ and y = CX + Du. Write down the expression for *A*, *B*, *C* and *D* [10]

5 (a) Write short notes o	n any four of the following:
---------------------------	------------------------------

(i)	Damper	winding
(1)	Damper	winnunng

(ii) Inter-area oscillations

(iii)	Eigen-value	sensitivities in	small signal	stability
()				•••••

- (iv)
- FACTS controllers Effect of Automatic Voltage Regulator (AVR) on power system stability Midterm and long term stability

[5] [5] [5] [5] [5] [5]

(v)́ (vi)

- 6 (a) Describe the importance of power system stabilizer (PSS) in small signal stability performance of the system. What are the commonly used input signals to PSS? [8]
 - (b) What is governor droop in turbine speed control? Why is it so important to have a large droop setting for governor in hydraulic turbine?. [5]
 - (c) Fig 6.1 shows the block diagram of a turbine speed control system. The values of T_{W} , T_{M} and K_{D} are 2.0, 10.0 and 0.0 respectively. Write down the closed-loop transfer function and identify the range of *R* that ensures closed-loop stability. [7]

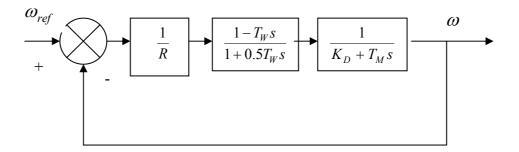


Fig 6.1