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Fuzzy Systems Exam Coursework 2002-2003
Deadline April 28th 2003 at 10.00 am *

Download the research paper Computational Military Tactical Planning
System, R. H. Kewley and M. J. Embrechts, IEEE Transactions on Systems,
Man, and Cybernetics, Part C, Vol. 32, No. 2, May 2002 via the library’s
access to ieeexplore.ieee.org

This paper describes an automatic system to assist with moves on a bat-
tlefield. The usefulness of a move is calculated using fuzzy logic. The moves
are generated using genetic algorithms, to be explained below. The detec-
tion of targets, and the effectiveness of shots is modelled using probability
distributions. The aim of this coursework is to refine the fuzzy logic module.

Read sections I and II. Remember that the battlefield application is just
an example of a decision making process using geographical data. The ex-
pansion of a large company could be modelled along similar lines.

Section III introduces genetic algorithms. This is a technique in which
a solution to a problem (here making a battlefield move that brings you
closer to your objective) is encoded in a vector. The components of this
vector are all the numerical values necessary to specify the move completely.
This vector is called a chromosome later in the paper. To start the genetic
optimization, a number of such vectors are generated. The set of vectors
is called a population. Each element of the population (each vector) has a
fitness. The fitness is calculated in section III B. using fuzzy logic. The
genetic algorithm optimizes the fitness of the population. It does this by
mutation and crossover. Mutation is a random change to the vectors in
the population. In crossover, elements of two different vectors are combined
into a new vector.You do not have to program genetic algorithms in this
coursework, but you will need to change the way fitness is calculated, so it
is important you understand the basics of how genetic algorithms work.

Section III also mentions multiple objective criteria. This means that
the objective is specified by more than one variable. To reach the objective,
several variables need to be close to specified values. Read all of section III,

*Post it in the appropriate locked box in the undergraduate office, level 6.
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paying specific attention to III B., on which your coursework will be based.
The abbreviation “Obj-Rich” in this section stands for Objective Rich, where
Rich is just a label, see Fig. 9. The word “by” on p. 163, line 24 should read
“be”.

You now also have to read sections IV to X, to get an idea of what the
authors have achieved. You can skip sections VII B 3 and 4 on co-evolution,
which is a special way of evolving populations. In section VIII, the authors
use statistics, a null hypothesis and t-tests, to show the effectiveness of their
solution. You do not need to understand this. Now that you have read
everything, what are the multiple objective criteria in this problem (2/20)?

The main part of your coursework consists in a gradual refinement of
the rules for preferences in III B., and the way they are applied. Replace
the numerical value for “Best-battle-plan” by a linguistic variable (1/20).
Re-formulate the preferences as one or more fuzzy graphs (2/20). Whether
you use one or more graphs is your decision. How does Fig. 2 now look like
(2/20)? Remember that marks are awarded for a description of your results,
it is not sufficient to write “I have done this”, or show a graph without
explanation.

The four stages of reaching the objective described in the first column of
p. 163 imply a time dependence. How would you make the fuzzy graphs you
have just derived, dependent on time (2/20)? How would you implement
the four stages to work consecutively (1/20)? What difference does it make
to implementing them all at the same time (5/20)?7 To answer the last
question, do some simulations. You can also use simulations to answer the
other questions about time dependence. Use simple membership functions.

In your simulations, one membership function should be centered around
the CID number on your college security card, multiplied b ower W
10 of your own choice, but such that the significant digits us e yo -

simulations verifiably different from those of your friends. I should be able to
verify the difference from your report, not by inspecting your code. If your
security card bears no number, use your date of birth.

The Challenge. If you want to get top marks, you have to do this
challenge. However, you will get better marks for a good report without the
challenge than for a mediocre report with the challenge solved.

The way of calculating preferences in the system in III. B. is called a 5_
Sugeno fuzzy inference system. How does this differ from Mamdani fuzzy
inference? Does the choice between Sugeno or Mamdani fuzzy inference
make any difference for the application in this paper (5/20)? Provide a well-
justified answer, based on simulations if necessary. This challenge is the only
part of this coursework for which you may have to look up a reference.
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You could organize your work as follows.

day 1

day 2

day 3

day 4

day 5

Read the paper, looking up anything you don’t understand in your
lecture notes. Plan what you are going to program.

Answer the questions that can be answered without programming. Do
the programming, and debug your program.

Run the simulations, and collect the results in a form that you can
present in your report. Simulations can be in any programming lan-
guage, on any machine. The use of Matlab or other software packages
will simplify your work, but make sure that you have control over the
parameters that you want to vary. If you are desperate, you could
use pen and paper, but this will make this coursework difficult and
abstract.

Write the report. It should be maximum six pages (single sided) a4, in
a font not smaller than 10 point. You will not get marks for anything
exceeding six pages, even if it is appendices. Font size in tables and
figures should be at least 10 point, or the tables and figures will not be
marked. Describe the problem, and how you have solved it. Describe
your simulations, but do not give programme listings. Do not give
references to the literature. Make sure you do and answer everything
that is asked for in the coursework. Do not bind the report, but staple
the pages together. Mention your name, and indicate for what degree
(e.g. MEng Elec. Eng., MEng ISE, MSc) you are studying.

Check the consistency and quality of your work. Make last minute
changes if necessary. If you feel confident and have the time, tackle the
challenge. Resist the temptation to spend more than five 8-hour days
of intensive effort on your coursework. You will not be compensated
for it in marks. Just as an exam paper requires a concentrated effort
over a few hours, this coursework requires a concentrated effort over a
few days.

Do not forget to attend on the “exam” day. This day will be advertised in
your exam schedule. Bring a copy of your report with you, and your college
security card. I will ask you one or two questions based on what you have
written in your report, to make sure that you have written it yourself. No
preparation is necessary.

Good luck.
Dr. P. De Wilde
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Computational Military Tactical Planning System

Robert H. Kewley and Mark J. Embrechts, Member, IEEE

Abstract—A computational system called fuzzy-genetic deci-
sion optimization combines two soft computing methods, genetic
optimization and fuzzy ordinal preference, and a traditional
hard computing method, stochastic system simulation, to tackle
the difficult task of generating battle plans for military tactical
forces. Planning for a tactical military battle is a complex, high-di-
mensional task which often bedevils experienced professionals.
In fuzzy-genetic decision optimization, the military commander
enters his battle outcome preferences into a user interface to gen-
erate a fuzzy ordinal preference model that scores his preference
for any battle outcome. A genetic algorithm iteratively generates
populations of battle plans for evaluation in a stochastic combat
simulation. The fuzzy preference model converts the simulation
results into a fitness value for each population member, allowing
the genetic algorithm to generate the next population. Evolution
continues until the system produces a final population of high-per-
formance plans which achieve the commander’s intent for the
mission. Analysis of experimental results shows that co-evolution
of friendly and enemy plans by competing genetic algorithms
improves the performance of the planning system. If allowed to
evolve long enough, the plans produced by automated algorithms
had a significantly higher mean performance than those generated
by experienced military experts.

Index Terms—Fuzzy logic, genetic algorithms, multiobjective
optimization, simulation.

1. INTRODUCTION

M ILITARY tactical course of action development is a very
complex and essential component of the military tactical
decision-making process [1] used to develop tactical operations
orders, the plans which direct soldiers into battle. Human plan-
ners have difficulties in dealing with the complexities of this task
[2]. This paper demonstrates the capabilities of a computation-
ally intelligent system to perform military tactical course of ac-
tion development. This system models human preference using
fuzzy sets from soft computing. It performs tactical planning
using genetic algorithms, also from soft computing. It models
combat attrition using stochastic system simulation, a more tra-
ditional hard computing technique.

Emerging computational intelligence techniques including
genetic algorithms and fuzzy inference systems complement
combat simulation technology to automatically search for
potential courses of action which accomplish specific mission
goals. This paper uses fuzzy-genetic decision optimization as a
technique to perform this search task. The decision-maker enters
his preferences using a graphical user interface to define his
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preference for any potential outcome of a battle. Planners define
a tactical scenario containing the terrain, friendly forces, and
enemy forces anticipated for the battle. A genetic algorithm per-
forms an intelligent search which allows a set of courses ofaction
to emerge in the final population. These courses of action yield
high achievement of mission goals in the combat simulation.

In a battle planning experiment, computational techniques
developed tactical plans which, when evaluated using a combat
simulation, performed as well as or better than plans developed
by experienced military experts. This better performance was
consistent with the commander’s preferences for this battle.
This result shows the potential promise of computational
techniques to aid human planners in tactical course of action
development.

II. COURSE OF ACTION DEVELOPMENT

The tactical combat decision made on the ground during
battle is one of the most difficult decisions faced by the military
professional. These decisions are often made under great stress.
Battle staff officers go for many days without sleep in their ef-
forts to thoroughly analyze all aspects of the recommendations
they make. Commanders often do the same, ensuring that their
soldiers are prepared to fight. The physical demands, the time
demands, and the emotional stress of the batle weigh heavily
on the minds of all involved. These endeavors ultimately have
a negative impact on decision making.

Battle planners often find it impossible to analyze the courses
of action they develop. The process involves too much data.
Enemy options, weapons system performance characteristics,
friendly capabilities, and large expanses of terrain all interact in
a complex manner to determine a winner or loser. Planners must
perform this analysis in poor lighting conditions with smeared
maps and mushy pens. They often resort to implementing over-
simplified rules of thumb or doing what worked last time, even
if the situation has changed.

Course of action development and analysis is a difficult task
for even the most experienced planners. They must estimate at-
trition ratios, line of sight across undulating terrain, movement
times, and enemy locations and concentrations in order to suc-
cessfully place friendly forces. By doctrine, battalion planners
place platoons in position. Consider a typical battalion sector
which may be 10 km wide by 20 km deep. Discretize this area
into possible platoon positions 250 m apart. The problem of
placing 12 platoons has 3200 or 1.14 X 10%2 possible solu-
tions. The planner must resort to rules of thumb and experience
to identify and select a few alternatives for even the most cur-
sory analysis. The human planner can use some automated help
in this process. Tactical decision making can be improved by in-
vestigating the potential for computational techniques to assist
planning.

1094-6977/02$17.00 © 2002 IEEE
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Fuzzy-Genetic Decision Optimization

Overall System Fitness
Genetic System Fuzzy
Algorithm Simulation Preference
Module Module Module
Decision System
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Genetic Fixed User
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Parameters

Population of High-Performance Decisions

Fig. 1. Block diagram for fuzzy-genetic decision optimization. The genetic algorithm module passes proposed solutions to the simulation for evaluation. The
fuzzy preference module aggregates the system performance vector into an overall system fitness, which is passed back to the genetic algorithm module. This
process continues to produce a population of high-performance solutions to the problem.

III. Fuzzy-GENETIC DECISION OPTIMIZATION

Fuzzy-genetic decision optimization (FGDO) solves complex
problems which require concurrent optimization of multiple ob-
jective criteria. It has three modules as shown in Fig. 1. The
first module is a genetic algorithm which varies the system deci-
sion variables according to the system fitness determined by the
output of the fuzzy preference module. FGDO accepts input pa-
rameters from the genetic algorithm and iterates the model and
fuzzy inference system until it finds a population of good solu-
tions to the problem. The second module is a simulation model
which evaluates the proposed solutions to the decision problem.
The third module is the fuzzy preference module. A graphical
user interface allows the user to select the important variables,
their ranges, and their order of satisfaction. These selections de-
fine a fuzzy inference system which aggregates the outputs of
the simulation model into one overall fitness value for that par-
ticular solution. FGDO is best suited to complex problems with
two distinct features. They cannot be modeled by simple equa-
tions suitable for optimization by other methods (such as linear
programming, nonlinear programming, or goal programming),
and they have multiple objective criteria.

A. Genetic Algorithms for Simulation Optimization

Current approaches to simulation optimization offer very few
techniques which allow optimization of nonlinear and stochastic
systems. Azadivar gives a summary of available methods for
simulation optimization [3]. Some of these are not appropriate
for complex stochastic simulations. Gradient search methods re-
quire a differentiable closed form formula for the objective as a
function of the controllable inputs. Finite difference techniques
for estimating gradient descent are not well suited to stochastic
models with high variability. A good estimate of the change in
the objective function given a small difference in the input re-
quires too many iterations.

Many complex systems require optimization of their struc-
ture, which allows the value, type, and number of inputs
variables to vary. Population-based evolutionary algorithms, or
genetic algorithms [4], a subclass of evolutionary algorithms,
can handle this type of optimization [5]. They address the prob-
lems of high computation cost, convergence to local extrema,
inability to handle qualitative variables, and ease of implemen-
tation. Evolutionary algorithms allow for mutation schemes
which govern the selection of a new qualitative variable from
the list of possibilities. The probabilistic exploration of the
solution space by a population as opposed to a single member
makes them less sensitive to local extrema as compared to other
methods. An evolutionary algorithm is simpler to implement
than solution techniques which require extensive knowledge of
statistics and mathematics. Evolutionary algorithms are better
able to handle noisy observations [6]. Evolutionary and genetic
algorithms have been successfully applied to multiobjective
optimization [7]-{9]. The evolutionary algorithm is a very
flexible and efficient method for simulation optimization. It
has the additional feature of being very easy to parallelize. For
these reasons, they are well suited for recommending solutions
to complex problems to a human decision-maker.

B. Fuzzy Ordinal Preference Model

Many problems confronted by decision-makers require ag-
gregation of preference over a large number of attributes. The
military tactical decision used in this experiment is a represen-
tative example. If a military commander accepts a mission to
eliminate enemy resistance in an objective area, his mission ac-
complishment may be measured by the number of enemy vehi-
cles and the number of enemy personnel remaining on the ob-
jective. These, however, are not his only considerations. He also
wants to preserve his soldiers and his vehicles. Furthermore,
follow-on operations may necessitate conservation of fuel and
ammunition. Definite conflicts exist in the objectives. A course
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of action which completely eliminates all enemy from the ob-
jective will likely result in higher friendly casualties. It will also
consume more resources. How does the commander define his
preference over these conflicting alternatives so that he may de-
vise a plan which seeks to maximize that preference?

Survey literature on multiattribute decision making breaks the
main techniques of aggregating utility into two main schools
[10], [11]. There exists the “American school” of utility or ex-
pected utility which seeks to aggregate all of the decision criteria
into one utility function. The “European” or “French speaking”
school developed out-ranking methods which develop a matrix
of pair-wise comparisons of alternatives. Utility models require
a simplifying assumption of preferential independence which
often does not exist in real decision situations [12]. Out-ranking
methods require the analyst to elicit extensive data from the de-
cision maker [10]. A newer lexicographic approach suggested
by Beroggi and Wallace [13], [14] does not allow compensation
among criteria.

Fuzzy sets have been applied to additive utility models to rep-
resent imprecision in the model’s values and weights [15], [16].
Several researchers have extended this idea to represent impre-
cision in analytical hierarchical process models [17]-{19]. Ef-
stathiou and Rajkovi¢ developed a methodology which inter-
views decision makers in order to develop a fuzzy inference
system which calculates the utility of alternatives [20].

This paper uses an implementation of ordinal preference [14]
using a Sugeno fuzzy inference system [21]. Infuzzy ordinal pref-
erence, the user, given a certain satisfaction level for the criteria,
defines what improvement to seek next in building a preference
from the worst conceivable case to the most optimistic. Consider
a simple offensive battle in which an attacking force is trying to
simultaneously destroy enemy forces, occupy a terrain objective
with friendly forces, and keep from being destroyed. The decision
maker may go through the following steps of ordinal preference.

The worst conceivable case is one in which enemy losses are
very low, a very low number of friendly vehicles occupy the ob-
jective, and friendly losses are very high. Note the fuzzy lin-
guistic approximations such as very high used to describe nu-
merical results [2222}-{24].

1) In order to improve preference, the attacker may choose
to first improve friendly losses from very high to medium.

2) Once he has retained acceptable friendly forces, he may
then choose to occupy the objective with vehicles, im-
proving that variable from very low to very high.

3) Once he was sure he could occupy the objective, he may
seek to eliminate enemy forces, improving enemy attri-
tion from very low to very high.

4) He could finally return to friendly losses and improve
them from medium to very low, reaching the most opti-
mistic result.

These preferences generate the following rules:

1) IF Percent-Friendly-Vehs-Destroyed is from-to very-high
med AND Percent-Enemy-Vehs-Destroyed is greater-
than-or-equal-to  very-low AND Number-Friendly-
Vehicles-In-Obj-Rich is greater-than-or-equal-to very-
low THEN Best-battle-plan = 0.5 + —0.0050 =
Percent-Friendly-Vehs-Destroyed.

2) IF  Number-Friendly-Vehicles-In-Obj-Rich  is from-
to very-low very-high AND Percent-Enemy-Vehs-
Destroyed is greater-than-or-equal-to very-low AND Per-
cent-Friendly-Vehs-Destroyed is less-than-or-equal-to
med THEN Best-battle-plan = 0.25 + 0.01 * Number-
Friendly-Vehicles-In-Obj-Rich.

3) IF Percent-Enemy-Vehs-Destroyed is from-to very-low
very-high AND Percent-Friendly-Vehs-Destroyed  is
less-than-or-equal-to med AND Number-Friendly-Vehi-
cles-In-Obj-Rich is greater-than-or-equal-to very-high
THEN Best-battle-plan = 0.5 -+ 0.0025 * Percent-
Enemy-Vehs-Destroyed.

4) TF Percent-Friendly-Vehs-Destroyed is from-to med very-
low AND Percent-Enemy-Vehs-Destroyed is greater-
than-or-equal-to very-high AND Number-Friendly-Ve-
hicles-In-Obj-Rich is greater-than-or-equal- to very-high
THEN Best-battle-plan = 1.0 + —0.0050 =* Percent-
Friendly-Vehs-Destroyed.

The graph in Fig. 2 shows how the criterion improvement in
each rule corresponds to a preference improvement using the
linear equation in its consequent. For example, the antecedent
of Rule 2 requires that the percentage of friendly vehicles de-
stroyed be less than 50% (med), the percentage of enemy vehi-
cles destroyed by less than 100% (very high), and the number of
friendly vehicles in Objective Rich be less than 25 (very high).
If all these conditions are true, the preference value for the battle
outcome will be 0.25 (the minimum preference corresponding
to this rule) plus 0.01 times the number of friendly vehicles in
Objective Rich for a maximum preference value of 0.5 when
25 vehicles (the maximum possible—very high) are in objec-
tive Rich.

Strict ordinal preference requires the decision maker to reach
his goal in one criterion before concerning himself with another.
In the example in Fig. 2, he would begin to care about occupying
the objective only if friendly losses were medium or better. The
fuzzy implementation allows the decision maker to gradually
consider the next objective as he approaches satisfaction in his
current objective. In this example, as friendly losses moved from
high to medium, the decision maker would begin to gradually
consider occupation of the objective as an important criterion.
This preference scheme accurately reflects the user’s preference
and allows for preferential dependence among the criteria. It is
also relatively easy to understand and elicit using a user interface
[25].

C. Stochastic Simulation Models of Complex Systems

A simulation is one of the most powerful tools used in the
design and evaluation of complex systems [26]. Many of the
systems in the real world are so complex that mathematical
models are intractable [27]. One alternative is to do experimen-
tation with the real system itself. One can easily see how ex-
perimenting with critical systems such as traffic control, local
economies, or military battles is inconvenient and expensive, if
not impossible. In other cases, such as system design, the system
of interest may not even exist. In these instances, it may be pos-
sible to simulate the system of interest [28]. This technique al-
lows modelers to investigate new policies, rules, and designs
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Fig. 2.

Each rule in the fuzzy ordinal preference system maps a variable improvement, shown on the horizontal axis, to a preference improvement, shown on the

vertical axis. For example, improving the number of friendly vehicles in Objective Rich from zero to 25 improves preference from 0.25 to 0.5 (medium).

without disturbing the real system. They can visualize system
performance. Analysts can control and stop time and view data
summaries to gain new insights into the critical variables and
their effects on the system. A military battle is ideally suited to
analysis by simulation.

There are some disadvantages to simulation. Model building
requires specialized training, and the model quality depends
on the modeler’s skill. Results are stochastic and often diffi-
cult to interpret. The analysis can often be expensive, time con-
suming, and not worth the effort. Finally, simulation models
are input-output models which yield the output of the system
for a given input. These models are “run” rather than “solved.”
They do not generate an optimal solution. It is up the analyst
to develop and evaluate different alternatives in search of better
performance [29]. Since most complex systems have many dif-
ferent outputs, a clear notion of a “better” solution escapes the
analysis. A combat simulation is no exception. The military
planner is trying to optimize performance across a broad range
of variables such as friendly losses, enemy losses, and control of
certain terrain areas. He also has a wide range of tactical choices
(inputs) which he may vary in countless combinations to seek
better performance.

Advancing technology alleviates many of the disadvantages
of simulation modeling. Many commercial simulation pack-
ages allow graphical and intuitive development of simulation
models without as much specialized training. Their visual and
statistical capabilities allow for easier analysis and interpreta-
tion of these models. Furthermore, increasing hardware speed
and availability allows for larger run sets. These developments
set the conditions for the success of fuzzy-genetic decision
optimization. A genetic algorithmm may now execute the large

number of runs needed to converge to an optimum. The fuzzy
preference model allows the user to aggregate simulation
outputs to define a clear notion of better system performance.
This notion, interpreted as a fitness value, serves as a road map
to guide the search for better solutions. A combination of these
software, hardware, visual, and algorithmic developments has
a synergistic effect which yields a powerful tool for finding
better policies, configurations, and designs of complex systems.
Military tactical course of action development serves as an
example domain where this approach is appropriate.

1) The Stochastic Combat Simulation: A combat simulation
model estimated the performance of a potential friendly plan
by running it against a set of possible enemy courses of action
to determine the outcome. The simulation used the following
models and data in its implementation.

Terrain data was imported from the Battlefield Effects and
Weapons System Simulation (BEWSS) [29]. An 80 km? re-
gion of hilly and partially wooded terrain was represented by
elevation postings at 50 m intervals. The presence of vegeta-
tion was also represented in the database. An explicit terrain
line of sight model is needed to ensure that target detections
is possible. The basic point-to-point line of sight model is the
point-to-point intervisibility algorithm first developed for the
SCIMITAR combat model [30]. Explicit line of sight calcula-
tions were done using these postings, and firers could not see
through the trees. Furthermore, movement speed was slowed to
one-third of normal speed in the trees.

The target acquisition model [31] calculates the mean time to
detect a target by a regression function fitted to the experimental
data. It considers range to target, target height, target velocity
across the field of view, terrain complexity, and the probability
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that the firer is looking in the target’s direction. Detections are
exponentially distributed. Pierec: = 1 — ¢~ 2T where 7T is the
amount of time since the last detection computation for this ob-
server. Pyetect 1s assumed to be constant for 7. D is the detec-
tionrate. In the simulation model, units, as opposed to individual
vehicles, are acquired. It is assumed that the acquisition of one
vehicle in a formation will also give away the position of other
vehicles in that formation.

The shot-by-shot attrition model assumes that the target is a
rectangular box and that the dispersion of the firer’s shots fol-
lows a bivariate normal distribution where the elevation and de-
flection dispersions are independent of each other. If a target is
2L mlong and 2H m high, and the weapons system has a center
ofaimat pz, p, with standard deviations o, oy, the single shot
probability of hit will be

L— £ T M
= (52) o (%)
Oz Ox

(I)(H_IJ'IJ)_¢<_H_I'L9) (1)
O'y O'y

where ®(z) is the cumulative distribution function of the stan-
dard normal distribution [32].

The indirect fire attrition model also uses BEWSS data [29].
Indirect fire systems launch munitions which disperse from their
point of aim using a bivariate normal pattern. An individual mu-
nition must fall within a lethal radius of the target to have an ef-
fect. This radius is approximated by a square for simpler calcu-
lation. For submunitions, the probability of impacting within the
lethal square is calculated using a triangular distribution based
upon the dispersal radius of the submunition. For smart submu-
nitions, each bomblet paints a circular footprint on the ground
in which it has a probability of acquiring each type of target. If
a target is hit by a submunition, the probabilities of firepower,
mobility, mobility and firepower, and catastrophic kills are used
to determine the outcome.

The indirect fire target selection model is based upon a sim-
ulated reporting system. Once a unit acquires a target, after a
random report interval, the target is reported to the unit’s fire
direction center and considered to be available to all friendly
indirect fire systems. All units supported by a particular fire di-
rection center share this common indirect fire target picture.

IV. TACTICAL PLANNING EXPERIMENT

A tactical planning experiment was conducted to assess
the potential for a computationally intelligent system to
autonomously generate high performance courses of action.
Human battle planners may also view and modify these courses
of action, making them more doctrinal while still retaining the
overall scheme of maneuver. This experiment had five goals,
as follows.

* To demonstrate intelligent, autonomous generation of
high-performance plans by fuzzy-genetic decision opti-
mization.

+ To estimate the performance of three different approaches
to enemy plan generation within fuzzy-genetic decision
optimization. Friendly plans may evolve against a set of
fixed enemy plans input by military experts, against au-

tonomously generated enemy plans which co-evolve along
with friendly plans, or against a combination of the two.
+ To benchmark the performance of autonomously gener-
ated plans against those generated by expert military plan-
ners.
* To compare tactical planning performance with the aid
of autonomously generated recommendations to tactical
planning without autonomous aid.
To collect performance data, parameter data, and insights
to aid planning and give direction for follow-on tactical
planning experiments.

V. THE TACTICAL SCENARIO

The planning task was to generate an offensive courses of ac-
tion for a future mounted combat scenario in hilly and partially
wooded terrain. The friendly forces, just complete with resupply
operations in Assembly Area Green in the north (see Fig. 9),
were given an immediate mission to continue the attack 15 km
to the south to destroy defending enemy forces and seize the key
terrain on Objective Rich. The enemy mission required them to
destroy friendly forces and prevent them from gaining Objec-
tive Rich. Each force had to perform its mission while also pre-
venting its own attrition. The friendly force commander entered
his battle outcome preferences using a graphical user interface
that implemented fuzzy ordinal preference as discussed in Sec-
tion III-B. Given values for enemy vehicles destroyed, friendly
vehicles destroyed, and friendly vehicles on the objective, the
resulting fuzzy inference system determined a preference value
from for the battle outcome. This value is used as a fitness value
for each friendly plan evaluated in the combat simulation.

VI. COURSE OF ACTION REPRESENTATION

Representation of an attack plan on a chromosome depends
on the ability to place different objects, as opposed to bits, real
values, or symbols, at different locations on the chromosome.
An attack plan consists of one or more phases, each consisting
of one or more contingencies. Phases are executed in sequence,
one after the other. At each phase, the friendly force executes
one of the available contingencies based on selection criteria
specified by the commander. A constraints object constrained
the allowable unit locations in the friendly area of operations
to a set of discrete points each 300 m apart. A location object
is simply an z, y pair of map coordinates representing one of
the allowable locations. Each unit in an attack plan is assigned
an allowable destination location for each contingency in each
phase of the battle. The chromosome arranges these locations
by phase, then contingency, then unit. The algorithm randomly
generates possible z, y locations for each position on the chro-
mosome using the following distribution. A unit is 50% likely to
remain in place during a contingency. Otherwise, it moves to one
of the battle area’s discrete possible z, y locations. Selection of
each discrete z, y location is equally probable. It initializes the
chromosome by randomly generating an z, y location for each
position on the chromosome. During evolution, it implements
mutation at each position on an offspring’s chromosome as fol-
lows. If a random draw is less than the probability of mutation,
the z, y location at that position is replaced by another randomly
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Fig. 3. Genetic algorithm represents a tactical plan as a linear chromosome
with each unit’s destination for each phase and contingency arranged linearly.

selected destination, to include the 50% chance of remaining in
place.

For the battle plans used during the tactical planning experi-
ment, each side was limited to two phases, each with one con-
tingency each. In other words, the force would execute all as-
signed movements (a movement from the current location to
its corresponding destination received from the location chro-
mosome) for phase one, contingency one. Once complete with
phase one, each unit would get a new destination from the loca-
tion chromosome and execute those movements for phase two,
contingency one. Since the friendly and enemy forces had eight
and nine units respectively, the location chromosomes, which
represented a battle plan for each force, had 16 and 18 allow-
able locations respectively. For the friendly plan represented in
Fig. 3, Unit 2 would move from its initial location to grid lo-
cation (532, 166) during phase 1, contingency 1. Then it would
remain in place for phase 2, contingency 2.

VII. DIFFERENT APPROACHES TO BATTLE PLANNING

This experiment tested six different methods of generating
tactical courses of action—generation by military experts, gen-
eration by four different automated algorithms, and modifica-
tion of automated plans by military experts.

A. Course of Action Generation by Military Experts

A group of experienced military experts participated in this
experiment. They were trained, experienced, and considered to
be very capable of developing tactical courses of action for the
size forces used in this experiment. This group had up to 30
min to develop an offensive plan for the experimental scenario.
They used a military map to reference the terrain in the area
of operations. They understood the composition, capabilities,
and intentions of both the friendly and enemy forces. They used
a computer graphical user interface showing the terrain in the
battle area to input each course of action. When complete, they
had generated a set of friendly courses of action for evaluation.

B. Automated Algorithms

Four different automated course of action generation algo-
rithms were tested. All of these methods generated courses of
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Fig.4. Fitness evolution during random search. Note the lack of improvement
over time, consistent with what one expects from a random search.

action with no human interaction. Each of these experiments
used a desktop personal computer with a 450 MHz processor
running the Linux operating system (ver. 2.2).

1) Random Search: In the random search method, the al-
gorithm randomly generated 400 courses of action and tested
each of them against two enemy plans developed by military
experts. The algorithm submitted for evaluation the course of
action which had the best average performance against two op-
ponent plans. This experiment required 35 min of computation
time. Fig. 4 shows the fitness progression for one of the random
search trials. The minimum, mean, and maximum fitness values
represent the statistics for each of 20 samples of 20 random
plans each, analogous to a genetic algorithm population. Note
the high variability within the population and the lack of an im-
provement in mean fitness value over time. This is what one
would expect from a random search. It contrasts with the graphs
for more intelligent algorithms. This experiment used the results
of the random search to confirm the intelligence of the other au-
tomated algorithms. A truly intelligent algorithm should outper-
form a random search, given the same number of trial courses
of action.

2) Genetic Algorithm Evolution Against Static Enemy
Plans: The first intelligent search method employed a genetic
algorithm. The genetic algorithm used a single population of
20 members for 20 generations, generating and evaluating 400
battle plans. The fitness of each plan was its average fitness
against two enemy courses of action developed by military
experts. The genetic algorithm replaced 60% of the population
with each generation. Since the fitness evaluation function,
the combat simulation, was stochastic, this replacement rate is
intended to ensure that a high performance plan did not drop out
of the population due to an unlucky fitness evaluation. A plan
only had to score in the top 40% to remain in the population.
Over time, consistently high performing members remained in
the populations as others dropped out. After fitness evaluation
for all members, the eight best members were copied into the
next generation. A tournament selection algorithm selected
two parents for mating as follows. It randomly selected three
members of the current population, compared fitness values,
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Fig. 5. Fitness evolution during the genetic algorithm. Note the upward

trend in both maximum and mean fitness, demonstrating at least some level of
intelligence.

and selected the best as a parent. All members were replaced,
and the tournament algorithm selected a second parent. If a
random draw with a probability of success of 0.9 yielded a
crossover, the two parents performed single point crossover
to form two offspring. Without crossover, the two offspring
were simply clones of their parents. Before the offspring
were inserted into the new population, each location on the
chromosome was subject to a 0.1 probability of mutation. Upon
mutation, the z, y coordinate pair on the chromosome was
replaced with a uniform random draw from the set of possible
locations in the area of operations. The procedure continued
until 12 new offspring joined the eight members already copied
into the new population. The genetic algorithm submitted
the best member of the final population as a recommended
high-performance course of action. Four independent genetic
algorithms generated four different courses of action to evaluate
against other methods. This experiment required 36 minutes
of computation time, about the same amount of time as the
random search. The graph in Fig. 5 shows the fitness evolution
for one of the genetic algorithms. Note the improving trend in
both the maximum and mean fitness values for each population
and the lower diversity of the genetic algorithm as compared
to the random search. This trend graphically demonstrates
improving fitness as the population of plans evolves.

3) Co-Evolution: For the co-evolution method, a competing
genetic algorithm, as opposed to a human planner, developed
the enemy courses of action used to evaluate the fitness of
the friendly courses of action. This technique employed four
friendly and four enemy genetic algorithms each evolving an
independent population of tactical plans. The genetic algo-
rithms employed during co-evolution used the same parameters
and genetic operators as the genetic algorithm method de-
scribed in Section VII-B2. However, the fitness evaluation was
different. The four enemy genetic algorithms employed a fuzzy
preference model for enemy mission accomplishment in order
to compete with the friendly courses of action. The enemy
preference model sought destruction of the friendly force and
preservation of enemy forces. The co-evolution algorithm
randomly initialized four independent friendly populations and

four independent enemy populations. For each generation, the
algorithm shuffled each of the eight populations, giving each
member a random ordering from one to 20. It then evaluated
the first member of each friendly population against the first
member of each enemy population. The fitness value for each
first friendly member was its average performance against
the four enemy courses of action ordered first in each enemy
population. The fitness value for each first enemy member was
its average performance against the four friendly courses of
action ordered first in each friendly population. This scheme
repeated itself from the second members all the way through
the twentieth members. Once the combat simulation runs
determined fitness for all members of all populations, each of
the eight genetic algorithms independently generated new pop-
ulations using the parameters and genetic operators described
in Section VII-B2.

Upon completion, this algorithm submitted the best member
of each population as a recommended course of action for the
battle, giving four different friendly courses of action and four
different enemy courses of action. The competitive design of
this algorithm sought to cause the enemy side to continuously
find and exploit potential weaknesses in the friendly plan,
causing the friendly side to adapt and patch the weaknesses
where possible. Although this technique evaluated the same
number of plans (400) as the static genetic algorithm, doubling
the number of enemy plans to evaluate against from two to
four doubled the computation time required for this experiment
to 72 minutes. The graphs in Fig. 6 show this process for two
of the competing populations. As the populations co-evolve,
the average fitness of the friendly plans goes up slightly, but
then levels off. The fitness of the enemy plans does not change
much during the course of the entire algorithm. Even though
each side continues to evolve better courses of action, the
improvements counteract each other, and the average fitness
remains fairly constant for each side.

4) Co-Evolution and Genetic Algorithm Hybrid: This
method was similar to the co-evolution method. However, the
fitness value for the friendly forces was a linear combination
of the course of action’s average performance against four
automated enemy courses of action in the competing enemy
populations (50% weight) and the average performance against
two static courses of action developed by military experts (50%
weight). This technique sought to evolve friendly courses of
action which performed well against a military expert’s best
guess of enemy intentions and against machine generated
courses of action which seek to exploit friendly weaknesses.
Because this experiment evaluated each of the 400 friendly
plans against six different enemy plans, it required 110 min of
computation time.

C. Human Modification of Automated Results

For this technique, the co-evolutionary/genetic hybrid ap-
proach generated two independent friendly courses of action.
The human experts then modified these courses of action as
they saw fit. They were instructed to develop their plans by first
visualizing the automated plans in the simulation. They could
then select one plan to modify, build a combination of the two
plans, or build their own plan from scratch.
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Fig. 6. Fitness for friendly and enemy forces during co-evolution. The
average and maximum fitness levels for each side level off and do not improve
with additional time. However, this does not mean that continued evolution is
fruitless. Each side improves, and their improvements counteract each other.

VIII. EXPERIMENTAL RESULTS

The initial phase of the experiment sought to determine
which of the automated algorithms showed the best perfor-
mance upon subsequent evaluation of the plans they developed.
Each algorithm, in separate and independent trials, developed
four friendly attack plans for the battle scenario. The combat
simulation model evaluated each attack plan five times against
six different enemy courses of action developed by six different
military experts, resulting in 30 different results. The fuzzy
preference system evaluated the fitness of each result, and the
average fitness produced by the 30 results was the estimated
performance of a friendly plan. This yielded an estimated
performance for each of the four plans developed by each algo-
rithm. The diamond plots in Fig. 7 show the mean performance
and standard deviation by each automated algorithm. The plot
clearly shows the better mean performance by the co-evolution
method and the hybrid method. It appears clear that each of
the co-evolutionary methods outperforms standard genetic
evolution against static enemy courses of action. Finally, the
fact that each of these automated methods outperforms a
random search by a factor of two confirms the intelligence
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Fig. 7. These diamond plots show mean performance (center line) and
standard deviation (tips) for each of the automated planning methods. Of
the four methods tested, co-evolution and the co-evolution/genetic hybrid
outperformed both a random search and a genetic algorithm evolving against a
set of fixed enemy plans.

of these algorithms. A series of t-tests tested the hypothesis
that the mean performance of the co-evolution method was
equal to the mean performance of the other algorithms, with
the alternate hypothesis that the mean performance of the
co-evolution method was greater than the mean performance of
other methods. The statistics in Table I confirm the graphical
observations. The increased performance of co-evolution over
a standard genetic algorithm and over a random search is
statistically significant at the o = 0.10 level, but the difference
between co-evolution and the hybrid method is not.

This analysis has shown that both co-evolution methods do
indeed produce intelligent results. It follows from the theory
behind these methods that their performance should increase
as they are allowed more computation time. This will give the
friendly genetic algorithm more opportunity to search for better
solutions and the enemy genetic algorithm more opportunity to
provide counter-plans to which the friendly algorithm must ad-
just. To test this theory, the experimenters allowed each algo-
rithm to continue to evolve past 20 generations to 40 genera-
tions, and the algorithm submitted the best performing members
of each population for evaluation. One would expect these plans
to perform better than those plans submitted after 20 genera-
tions. As shown in Table II, the analysis rejected the null hypoth-
esis with & = 0.10 for both planning methods, concluding that
performance improves with computation time. The experiment
proceeds to the next phase with confidence that both methods of
co-evolution intelligently search for and find high-performance
plans.

The final phase of this experiment sought to see if the
automated methods, or the human planner with automated
assistance, could outperform unassisted human planners. The
co-evolution and the co-evolution/genetic hybrid techniques
each evolved for 40 generations to produce four friendly
attack plans. This evolution took 145 min for the co-evolution
technique and 219 min for the hybrid technique. These plans,
along with four automated plans modified by human experts,
were compared to four plans developed by unassisted experts.
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RESULTS OF ONE-TAILED ¢-TEST USED TO TEST THE HYPOTHESIS THAT THE MEAN PERFORMANCE OF PLANS PRODUCED BY THE CO-EVOLUTION METHOD IS
EQUAL TO THE MEAN PERFORMANCE OF PLANS PRODUCED BY OTHER METHODS WITH o = 0.10. THE ALTERNATIVE HYPOTHESIS WAS THAT THE MEAN
PERFORMANCE OF PLANS PRODUCED BY CO-EVOLUTION WAS GREATER THAN THE MEAN PERFORMANCE OF PLANS PRODUCED BY OTHER METHODS

Planning Method | Time req’d | n | Mean Perf | Std Dev | t-value p-value | Sig?
Co-Evolution 35 min 4 | 0.308 0.025 - - -
Random Search 36 min 4 10.136 0.083 3.98 0.008 Y
Genetic Alg 72 min 4 ] 0.226 0.047 3.09 0.013 Y
CE/GA Hybrid 110 min 4 | 0.308 0.076 0.01 0.495 N

TABLE 1I

PAIRED ¢-TEST TESTED THE HYPOTHESIS THAT THE MEAN PLAN PERFORMANCE FOR BOTH CO-EVOLUTIONARY ALGORITHMS AFTER 40 GENERATIONS WAS
EQUAL TO THE MEAN PLAN PERFORMANCE AFTER 20 GENERATIONS WITH THE ALTERNATIVE HYPOTHESIS THAT THE MEAN PLAN PERFORMANCE AFTER 40
GENERATIONS WAS GREATER THAN THE MEAN PLAN PERFORMANCE AFTER 20 GENERATIONS. FOR BOTH CO-EVOLUTION AND THE HYBRID TECHNIQUE, THE
ANALYSIS REJECTED THE NULL HYPOTHESIS AT & == 0.10 AND CONCLUDED THAT PLAN PERFORMANCE IMPROVES AS COMPUTATION TIME INCREASES

Method 7 | Mean Perf 20 Gen | Mean Perf 40 Gen | t-value | p-value | Sig?
Co-Evolution || 4 0.308 0.376 1.85 0.081 Y
CE/GA Hybrid || 4 0.308 0.389 3.61 0.018 Y
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Fig. 8. These diamond plots show mean performance (center line) and
standard deviation (tips) for plans developed by two automated schemes, by
military experts modifying automated plans, and by unassisted military experts.
Co-evolution and the co-evolution/genetic hybrid outperformed the human
experts while the human experts modifying automated plans did not.

The diamond plot in Fig. 8 shows the relative performance for
each method. Graphical analysis shows that both automated
algorithms produced plans which, on average, clearly out-
performed the military experts when evaluated in the combat
simulation model. However, the mean performance of the
automated plans modified by human planners was nearly the
same as the mean performance of plans developed by unaided
experts. Statistical analysis in Table III confirms the graphical
analysis. From these tests, one concludes that co-evolution and
the hybrid technique each outperformed the military experts
while the human modifications to automated plans did not.
The graphical and statistical analysis of this experiment’s re-
sults have shown that fuzzy-genetic decision optimization does
indeed produce intelligent and effective solutions to complex
military tactical problems. It has also shown that co-evolution of
friendly and enemy plans, as opposed to evolving against a static
set of enemy plans, is a powerful way to evolve robust friendly
plans which perform well against a variety of enemy schemes.

These automated planning techniques have a time cost, but ad-
vancing technology will make it less of an issue. If allowed
to evolve long enough, they produce courses of action which
perform better than plans developed by military experts. The
best-performing automated techniques required 145 and 219
min at 40 generations, compared to the 30 min given to mili-
tary experts. However, desktop computers with four times the
processor speed of the one used in this experiment are cur-
rently available, and these machines will only get faster. Com-
putational techniques have the potential to produce better per-
forming tactical plans than human experts within the time con-
straints of the tactical situation.

IX. EVOLUTION OF TACTICAL DOCTRINE

In addition to the objective analysis of this experiment’s
results, a subjective tactical analysis of the courses of action
produced by fuzzy-genetic decision optimization illustrates that
this system evolves sensible doctrinal behavior for the modeled
forces. The evolved tactics make sense when viewed with a
trained military eye. Fig. 9 shows the tactical plan discovered
by using the co-evolution method of Section VII-B3. This plan
uses the ground maneuver forces, two mechanized infantry
platoons, to attack along Axis Attack to seize Objective Rich.
The attack helicopters conduct a supporting attack along Air
Axis Comanche. The unmanned aerial vehicle conducts aerial
reconnaissance and observation from Observation Post 1 to spot
enemy forces so that artillery units in Assembly Area Green
can destroy them. Friendly scouts move beyond the objective
to occupy a screen line. From there they protect the attackers
moving across the objective. The roles assumed by forces in
this mission match the doctrinal roles for which the combat
vehicles in these units were designed. First, reconnaissance
moves in to spot enemy and attrit him with artillery fires. Then,
attack helicopters support by fire while maneuver forces move
onto and seize the objective area.

In this mission, the friendly force adapted to a point where
individual units performed doctrinal missions in advantageous
terrain. These doctrinal roles were not entered as a constraint
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TABLE III
RESULTS OF ONE-TAILED $-TEST USED TO TEST THE HYPOTHESIS THAT THE MEAN PERFORMANCE OF PLANS PRODUCED BY THREE ALTERNATIVE PLANNING
METHODS Is EQUAL TO THE MEAN PERFORMANCE OF PLANS PRODUCED BY MILITARY EXPERTS WITH o = (.10. THE ALTERNATIVE
HYPOTHESIS WAS THAT THE MEAN PERFORMANCE OF PLANS PRODUCED BY THE ALTERNATIVE METHODS WAS GREATER THAN
THE MEAN PERFORMANCE OF PLANS PRODUCED BY MILITARY EXPERTS

Planning Method Time Req'd | n | Mean Perf | Std Dev | t-value p-value | Sig?
Military Experts 30 min 4 10.209 0.139 - - -
Co-Evolution 145 min 4 [ 0.376 0.094 1.97 0.053 Y
CE/GA Hybrid 219 min 4 | 0.389 0.032 2.50 0.044 Y
Experts w/ Auto Aid | 249 min 4 ]0.224 0.037 0.19 0.429 N

Legend
Contour —
Forest
River i
| Fighting Vehicle O
Enemy Tank A
|1 Artillery )
Aircraft M
Unmanned Aerial VAV
Vehicle M

Enemy forces are shaded
and friendly forces are
outlined

Fig. 9. Tactical plan developed by co-evolution. Two mechanized infantry platoons conduct the main attack along Axis Attack to seized Objective Rich while
attack helicopters support from the eastern flank along Air Axis Comanche. An unmanned aerial vehicle occupies an observation post (OP1) to spot enemy forces
for destruction by artillery, which remains behind in Assembly Area Green. Friendly scouts move beyond the objective to occupy the screen line and protect

attacking forces moving across Objective Rich.

or restriction for the algorithm. The doctrine was an emergent
property that evolved from successive trial and error in order
to maximize accomplishment of mission goals. The doctrinal
unit roles are due to a genetic search which discovered excel-
lent performance using these roles. This feature of fuzzy-ge-
netic decision optimization suggests that it could be used as a
method by which military forces experimentally use computa-
tional methods to evolve possible doctrine for future forces, es-
pecially in situations where new technology, terrain, and enemy
composition render old doctrine obsolete. This methodology, as
opposed to expert opinion, is not subject to the bias and nar-
rowed focus of current doctrine.

X. CONCLUSIONS AND SUBSEQUENT ANALYSIS

It was demonstrated that military tactical course of action
development is a complex and difficult task with which even
the most experienced military professionals have difficulties.

Fuzzy-genetic decision optimization is a technique which may
be applied to this complex task. The military commander enters
his preferences into a graphical user interface in order to de-
velop a fuzzy inference system to estimate his preference for all
possible battle outcomes. A genetic algorithm iterates a combat
simulation model in order to search for a final population of
high performance tactical plans which meet the commander’s
goals for the scenario. A planning experiment demonstrated that
co-evolution of competing friendly and enemy plans increased
the performance of this algorithm. In fact, these plans performed
well when compared to plans developed by qualified military
tactical planners.

Future experimentation and analysis will refine and improve
these techniques. The performance of the military planners
modifying automated plans has potential for improvement.
Some empirical research and analysis is necessary to develop
a system by which human planners can observe and evaluate a
set of recommended courses of action produced by automated
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algorithms, select a good candidate, and modify it to be imple-
mented by military forces. An extension of this analysis would
be to investigate the applicability of interactive evolutionary
computation to plan development [33]. At certain intervals in
the evolutionary process, human experts could subjectively
augment the objective fitness evaluation by the combat simula-
tion. Potentially, the evolved plans would perform well in the
combat simulation and conform to the subjective standards of
expert planners.

Computationally intelligent control of military forces fits
naturally into the rapidly changing combat analysis landscape.
The concurrent evolution of computer power, battlefield
connectivity, and network-centric warfare [34] will yield an
environment in which the most current friendly, enemy, and
terrain information will be available for analysis. Computers
distributed at all echelons of the battlefield will be able to
use this information to continually search for improvements
to the current tactical situation and share the results of that
search. At appropriate intervals, military commanders will
be able to query this collective network for recommended
changes to force deployment plans, based upon the most
current intelligence picture. Another more near-term use for
computationally intelligent planning is for computer-generated
forces embedded in current virtual and constructive combat
simulation models. Computer-generated forces could develop
and execute tactical plans entirely by automated algorithms.
This could streamline scenario development and execution for
these simulations, relieving military experts of the need to plan
for and control the automated forces.
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