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Neural Network Models Exam Coursework
2003-2004
Deadline April 26th 2004 at 10.00 am *

This exam is based on the paper Pruning Error Minimization in Least
Squares Support Vector Machines, Bas de Kruif and Theo de Vries, IEEE
Transactions on Neural Networks, Vol. 14, No. 3, May 2003, p. 696-702. 1t
is available from the library electronic journal website. The paper is about
function approximation (regression) based on a set of data points. Some data
points are deleted, this is called pruning in the paper.

Read section I. Note that this paper will use support vector machines for
function approximation only, not for data classification. Do not look up any
references. (The challenge at the end of this exam is the only point where
vou will need to look up a further paper.) Look at figure 1. It explains the
procedure well, but the terminology may be unfamiliar to you. By “optimize”
is meant the fitting of a function to the data points. The box “Error norm
violated?” means that the loop will stop if the approximation is sufficiently
good. The pruning is the removal of data points. One pass through the loop
is called an iteration.

Read section IT A. Do not worry if you don’t understand what a radial
basis function or a spline is. Equations (3) and (4) define how the function is
fitted to the data. Note the term %wTw added to the error, and the multiplier
~ > 0 of the sum of squares. This technique is called regularization. Ex-
plain in words what the purpose of regularization is (1/20). Backpropagation
is another technique that can be used for classification as well as for func-
tion fitting. Write down equations similar to (1)-(4) for a backpropagation
network (2/20).

The constrained optimization is solved using Lagrange multipliers. De-
riving equations (6) will make you more familiar with the notation (no marks
for this). Write out the matrix equation (7) for N=3, without using matrices
(no marks).

*Post. it in the appropriate locked box in the undergraduate office, level 6.



The application of the kernel to the data points zy and z; is denoted
Ky, x). We will use two kernels in this coursework exam. One is the
radial basis function kernel

1

K. (x,x1) = exp (‘5&—2(% - xz)2> ;

the other is the sigmoid kernel
K(x, X)) = tanh(0.1lzgz; + 1).

You can see from equation (8) that all you need to know for approximating
the data with a function are the Lagrange multipliers a; and the bias b from
(7), and the functional form of the kernel. Think about how you will program
this. To solve the linear system (7), you will use a linear equation solver.

Now read section II B about the combination of pruning and regulariza-
tion. Tt is claimed at the start of the section that  trades off small approxi-
mation errors for a smooth function. Explain (1/20). The authors are going
to compare two ways of pruning: omit a point and regularize (y > 0), or
regularize, and then omit the point by minimizing (3) with v = 0. Make
sure you understand the correspondence between pruning a data point, and
omitting (i.e. making equal to zero) the corresponding Lagrange multiplier.
The main part of your exam is to compare these two procedures, for two
different kernels.

Cenerate one set of 15 training samples {, yx }, where 0 < xj < 1. Draw
the samples from the sinc function, with noise added. Make one sample point
dependent on your CID number, so that your simulations are different from
those of your friends. (The least significant digits of your CID number differ
wore between students than the more significant digits.) Choose the radial
basis function kernel K, to start with. Decide on a value for . Finding the
best value for o will not get you extra marks. For these training samples,
and this kernel, compare the two methods from the paper: regularization
and pruning, and regularization followed by pruning with v = 0. Prune one
or two points. Show and discuss your simulations (5 /20). Now do the same
for the sigmoid kernel K (5/20). The first method in the paper depends on
the choice of gamma. Try a few different values. You do not have to justify
your choice for o, but you do have comment on your choice of 7.

Ignore the sentence “the distribution of the input samples determines the
amount of information a specific sample contains” in section II B. You will
be better able to comment on the results of your simulations if you also read
section I1T of the paper. The iterations mentioned are the successive pruning
steps from figure 1. Do not derive any equations, such as (14). Below (18),



the authors state that it is best to remove the sample with the smallest
[T‘iiﬁ, What do you think of this (1/20)? The appendices in the paper are
not relevant for you.

The Challenge. If you want to get top marks, you have to do this
challenge. However, you will get better marks for a good report without the
challenge than for a mediocre report with the challenge solved.

Look up Mercer’s original paper. The correct citation for the journal is
Philosophical Transactions of the Royal Society of London, Series A, Vol. 209
(1909), p. 415-446. It is available from the library electronic journal web site.
Find conditions so that the kernel x(s,t) = tanh(p st + q) is of positive type
(5/20). In this kernel, p and ¢ are constants. It is not necessary to read the
whole paper.

There is no simple condition on p and ¢ alone that guarantees the kernel
to be of positive type, the condition will involve s and t as well. Try to
find the strongest necessary conditions you can. You will get marks for
the way you tackle this problem as well as for the results. Remember that
1Y k(s,)0(s —ag)ds = (ag,t) for a <ag <D, with § the Dirac delta function.

You could organize your work as follows.

day 1 Read the paper, looking up anything you don’t understand in your
lecture notes. Answer the questions that can be answered without
programming. Plan what you are going to program. Find the Matlab
routines for generating random numbers and solving linear systems.
Other packages also contain such routines e.g. Nunerical Recipes in C
and GNU Scientific Library (GSL).

day 2 Do the programming, and debug your program.

day 3 Run the simulations, and collect the results in a form that you can
present in your report.

day 4 Write the report. It should be maximum six pages (single sided) A4, in
a font not smaller than 10 point. You will not get marks for anything
exceeding six pages, even if it is appendices. Font size in tables and
figures should be at least 10 point, or the tables and figures will not be
marked. Describe the problem, and how you have solved it. Describe
your simulations, but do not give programme listings. Do not give
references to the literature. Make sure you do and answer everything
that is asked for in the coursework. Do not bind the report, but staple
the pages together. Mention your name, and indicate for what degree
(e.g. MEng Elec. Eng., MEng ISE, MSc) you are studying.



day 5 Check the consistency and quality of your work. Make last minute
changes if necessary. If you feel confident and have the time, tackle the
challenge. Resist the temptation to spend more than five 8-hour days
of intensive effort on your coursework. You will not be compensated
for it in marks. Just as an exam paper requires a concentrated effort
over a few hours, this coursework requires a concentrated effort over a
few days.

Do not forget to attend on the “exam” day. This day will be advertised in
your exam schedule. Bring a copy of your report with you, and your college
security card. I will ask you one or two questions based on what you have
written in your report, to make sure that you have written it yourself. No
preparation is necessary.

Good luck.
Dr. P. De Wilde
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Pruning Error Minimization in Least Squares Support Vector Machines

Bas J. de Kruif and Theo J. A. de Vries

Abstract—The support vector machine (SVM) is a method
for classification and for function approximation. This method
commonly makes use of an e-insensitive cost function, meaning
that errors smaller than € remain unpunished. As an alternative,
a least squares support vector machine (LSSVM) uses a quadratic
cost function. When the LSSVM method is used for function
approximation, a nonsparse solution is obtained. The sparseness
is imposed by pruning, i.c., recursively solving the approximation
problem and subsequently omitting data that has a small error
in the previous pass. However, omitting data with a small ap-
proximation error in the previous pass does not reliably predict
what the error will be after the sample has been omitted. In this
paper, a procedure is introduced that selects from a data set the
training sample that will introduce the smallest approximation
error when it will be omitted. It is shown that this pruning scheme
outperforms the standard one.

Index Terms—Function approximation, pruning, regression,
support vector machine (SVM).

I. INTRODUCTION

HE SUPPORT vector machine (SVM) has been intro-
duced by Vapnik [1] as a method for classification and
for function approximation. In this paper, we will be concemed
with function approximation only. The SVM makes it possible
to deal with high-dimensional input spaces, because it is not
liable to the curse of dimensionality [2]; the parameterization
of the approximator depends on the complexity of the function
only. The SVM is typically based on an e-insensitive cost
function, meaning that approximation errors smaller than ¢ will
not increase the cost function value. This results in a quadratic
convex optimization problem. Due to the inequality constraints
contained in this method, the solution that is obtained is sparse.
Instcad of using an e-insensitive cost function, a quadratic
cost function can be used. This approach results in so-called
lcast squares support vector machines (LSSVMs), which were
introduced by Suykens [3] and are closely related to regular-
ization networks [4]. With the quadratic cost function, the op-
timization problem reduces to finding the solution of a set of
linear equations. This is computationally attractive, however,
the obtained solution is not sparse. Sparseness is imposed by
pruning, 1.c., recursively solving the approximation problem
and subscquently omitting data that has a small error in the pre-
vious pass. See Fig. 1.
This two-step approach of LSSVM gives the user control over
the approximation process, as it is clear what error is introduced
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Fig. 1. Obtaining a sparse solution.

by imposing sparseness. This makes the appraisal between the
number of support vectors and the pruning error explicit. To
have a clear measure on how the approximation error on the
training set is influenced by the pruning, the method used in 5]
in which an SVM is used to select a sparse set of support vectors
to approximate the function, is not used.

The selection of data to be omitted during pruning is one of
the determining factors of the function approximation process.
The standard procedure for this in LSSVM, omitting the
sample with the smallest approximation error in the previous
pass, seems sensible, as LSSVM has shown to work well [3].
However, the choice for this selection procedure only accounts
for the absolute error and does not incorporate the location of
the samples. In this paper it will be shown to be suboptimal. In
addition, an alternative procedure will be proposed that selects
from a data set the sample that will introduce the smallest
approximation error when it is omitted in the next pass of the
approximation. An example illustrates the differences between
these methods.

This paper is organized as follows. In Section 1, function ap-
proximation by means of LSSVM is reviewed and the subopti-
mality of the standard pruning scheme is illustrated. An alter-
native pruning procedure is proposed in Section III. This pro-
cedure is tested on an example function and compared to the
standard scheme in Section IV. The conclusion is given in Sec-
tion V.

[I. LSSVM FOR FUNCTION APPROXIMATION

This section summarizes known theory concerning LSSVM
for function approximation and is based on [1], [3]. First, the
general function approximation problem is outlined. Next, reg-
ularization and pruning are treated.

A. Function Approximation

Consider a given set of training samples {xk, yk }x=1..~, in
which iz, is the input vector and y; is the corresponding target
value for sample k. The goal of function approximation is to find
the underlying relation between the input and the target value.
Once this relation is found, the outputs for inputs that are not
contained in the training set can be approximated.

1045-9227/03$17.00 © 2003 IEEE
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With a SVM, the relation underlying the data set is repre-
sented as a function of the following form:

g(x) = w' ¢(w) +b. M
In here, ¢ is a mapping of the vector = to some (probably high-
dimensional) feature space, b is the bias and w is a weight vector
of the same dimension as the feature space. The mapping ¢(z:)
is commonly nonlinear and makes it possible to approximate
nonlinear functions. Mappings that are often used result in an
approximation by a radial basis function, by polynomial func-
tions. or by splines [5], [6].
The approximation crror for sample & is defined as follows:
er = Yk — §lak) (2)
and for the given data we search for those weights that give the
smallest summed quadratic error of the training samples in case
of LSSVM. Because this can easily lead to overfitting, ridge
regression (a form of regularization) is used to smoothen the

approximation. The minimization of the error together with the
regularization is given as

. 1 1 ¢
wmin T(w,e) = §wT'm + 73 kZ:() ()E (3)
with equality constraint

Y = ’u)T(}S(::;k) + b+ e 4
Here v is the regularization parameter,

This problem can be solved using optimization theory [7].
Instead of minimizing the primary objective [(3)], a dual ob-
jective, the so-called Lagrangian, can be formed of which the
saddle point is the optimum. The Lagrangian for this problem is
given as

N

whoea) = Tlw,e) — Z (){k(’ll)T(f)(fL'k) +b4 e —yi)-

k=0
)
In this cquation, the «v;’s are called the Lagrangian multiplicrs.
The saddlc point can be found by setting the derivatives equal
to zero

Llu

. N
)L
(_— =0 —w= Z apdlay)

w
k=1
N
L
iy N . =0
b 2
k=1
L
— =0 — ap = vey
Jey,
L .
,(— =0 = wldluy) +b+e, —yp=0. (6)
vy,

Elimination of ¢, and w through substitution results in the fol-
lowing sct of linear cquations:

0 7
e BB o

In this equation, [ is a column vector filled with ones, « is
the vector with the multipliers and y is a vector with the target
values. The elements of matrix Q2 equal Qg = (P(xk), ()
K.y, ). The innerproduct is defined as (¢(zk), (1))
()T éla). To caleulate the elements in this matrix, the map-
ping ¢{x) from input space to feature space does not have to

I

Il
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be made explicitly; it can be calculated in the input space. The
matrix €2 is symmetric positive definite, because otherwise it
would not fulfill Mercers conditions on innerproducts in an ar-
bitrary space [8] if different input samples are used. The solution
of this set of equations results in a vector of Lagrangian multi-
pliers « and a bias 0.

The output of the approximator can be calculated for new
input values of = with & and b. The output is given as

={w, p(z)) + b

< ard(xg), d(a )> +b
k=1

ap{P(rr), d(z)) + b

Il

x>
Il

Il
x MZ

1

pnﬁz

O{kK(Ik, )+b (8)

=
Il
—

B. Pruning and Regularization

In (3) a parameter +y is present that trades off small approxi-
mation errors versus a smooth function. This is a form of regu-
larization that is known as ridge regression [9]. The goal of reg-
ularization is to stabilize the final approximation by means of
some nonnegative function that embeds prior information about
the solution [10]. Information that is commonly assumed, is the
smoothness of the function. This assumption will smoothen the
output of the network and thereby make the solution less sensi-
tive to the current realization of the noise. This will in general
increase the generalization ability.

Next to using a regularization to increase the generalization
ability, pruning also commonly improves the generalization
[11]. Pruning is the omission of free parameters in a network.
An overview of pruning techniques is given in [12]. Pruning is
necessary if LSSVM is used, because in contrast with standard
SVMs as proposed by Vapnik [1], which are based on an
e-insensitivity cost function, the «’s that appear in LSSVM are
not sparse. This implies that all the training points in the data
set with their Lagrangian multiplier are needed to calculate the
output of a new input, which is clearly unattractive. Therefore,
sparseness is imposed by pruning.

Two schemes for combining pruning and regularization are
given in Fig. 2 by the dashed lines. The first line represents the
combined pruning and regularization scheme. In this scheme, a
parameter is omitted and the resulting weights are recalculated
with the regularization. In the case of LSSVM it means that the
~ has a nonzero value while pruning. The second line in Fig. 2
expresses the scheme were there will be first regularization and
afterwards pruning. In this scheme, the regularized data is as-
sumed noiseless and the goal of the pruning is solely to down-
size the number of parameters. In the case of LSSVM, it means
that the -y is set to zero after the regularization.

The advantage of the first scheme is that there is more design
freedom. During the pruning, different regularization method
can be applied. How this design freedom can be used to increase
performance is difficult because the combination of the regular-
ization and the pruning determines the final result. The stopping
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Fig. 2. Possible ways to combine pruning and regularization.
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Fig. 3. Present error and the error it will introduce after it is omitted. The input

samples are evenly distributed on the input space. Note the difference in scales.

of this method can be tested on an evaluation set. If the error on
this set is increasing, the pruning should be stopped.

The advantage of the second scheme is that the approxima-
tion crror that is introduced by pruning on the regularized data
is clear. The uscr can specify an approximation error that is al-
lowed betwecn the pruned approximation and the full regular-
ized approximation and the pruning can continue until this ap-
proximation error norm is violated. Another stopping criterion
can be that the pruning will continue until the error on a sepa-
rate data sct, the evaluation set, starts increasing. The regular-
ized solution can make use of complex regularization functions
to smoothen the data.

Henceforward the second pruning scheme will be used, be-
cause this scheme clearly relates the error introduced due to the
pruning.

The intuitive motivation for pruning the sample with the
smallest absolute approximation error seems to be that this
sample appears to have the smallest information content.
However, this is only half the story, as also the distribution
of the input samples determines the amount of information a
specific sample contains. The influence of the distribution on
the value of the present approximation error and the error after
the omission of the sample will be illustrated by an example.
The function that we want to approximate is a (noiseless)
sinc-tunction. In Fig. 3, the present approximation error and

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

-3
X107

Error now (Solid)
[}

Introduced error after omission (Dashed)

” ; i i 3
0 0.25 0.5 0.75 1
input
Fig. 4. Present error and the error it will introduce after it is omitted. The

density of samples is higher around 0.5. Note the difference in scales.

the introduced approximation error are given if the support
vector is excluded which is located at the input in the case that
the samples are evenly distributed. So, the approximation error
at z = 0.5 would be about 0.8 - 1072 if the support vector
at &z = 0.5 is omitted, while this approximation error was ca.
3 - 1075 before it was omitted. In this case the introduced error
is proportional to the present error. However, if the data is not
distributed evenly throughout the input space, the introduced
error is not proportional to the present error, as is illustrated in
Fig. 4. In this figure the number of samples is increased around
0.5. This shows that the difference in error due the omission of
the support vector can not be determined solely on basis of the
magnitude of the present error.

By selecting the training sample that will introduce the
smallest error after omitting, the increase of the approximation
error due to pruning will be minimal. The remainder of this
paper is devoted to a procedure that accomplishes this.

[II. MINIMAL INTRODUCED ERROR

The approximation error of LSSVM is minimized if one
selects for pruning that training point that will introduce the
smallest additional approximation error affer being omitted
from the data set for the next iteration. The estimation of the
output at iteration mm of training sample j can be calculated
using (8)

N
gt () = Z apt K (xp,@j) + ()é:;-"’K(.'I:j,.'I,']‘) +bm. 9
k=0
k#£3

The multiplier for sample k at iteration rn is denoted as o,
while b denotes the bias at iteration m. If sample 7 is removed
from the training set, the output of its input z; in iteration mn + 1
is given as

N
;1]’”’“(‘7;]-) = Z a?"“K(wm x;)+ prretL.

k=0
oy

(10)
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Subtracting these outputs gives the introduced error at sample j
when sample j is omitted, as follows:

N

d{a;) = Z ((”;.:’

k=0

by

— (y;f'H)K(:l:k.:l:j))

+(x.',]-"’K(:1:j, )+ b =™ Hooan

This equation shows clearly that the introduced error does not
just depend on «}"*, but more factors determine the introduced
error.

The omitting of a training point is equal to setting its La-
grangian multiplier to zero, because it will no longer have any
influence on the output of the approximator.

in (3) a regularization parameter -y is present to weight the
importance of the accurate approximation and the smoothness
of the function. If this « is sct to zero, the error of the approx-
imation does not influence the criterion, so only the weight is
minimized. This will result in a weight of zero. Hence, the value
of the Lagrangian multiplier of a selective training point can be
made zero by applying regularization with v = 0 only on that
sample.

The regularization of only one element of the solution can be
done by adding a regularization parameter on the corresponding
diagonal term. Applying this for element j gives the following
set of linear equations:

. oy -
ot ! ! b 0

T )‘ 0 w1 0 2 Q.51 _ Y1...5-1
P u){ TR+ A wg @y Yi

T Ony wo Qpol LHFLN YjrL.N

(12)
[f A = 0 this equation is the same as (7). By setting A — oo the
value of «v; is forced to become zero.

This set of equations is of the form Az = ¢ in which A is
the matrix on the left-hand side, = is the solution containing the
Lagrangian multipliers and the bias and ¢ is the vector with the
targets. We want to determine the difference in the solution if
A goes from zero to infinity, which is equivalent to omiiting the
corresponding sample.

Starting at A = 0

Axp = ¢ z = A"te (13)
Setting A — oo. A and its inverse are updated as [13]
A=A+ un”
A huaT A
Ab AT o — 14
1+uTA b

In this equation the vector « is defined as u = [0, 07, VA, 07]7,
To find the difference in the Lagrangian multipliers, the solution
of 2 before and after the update are subtracted from each other

. Ay TAT?
gg = AT - —=———— ¢
14+uTA 1y

Aty T AT
£y —ag = | ——m——— ] ¢
14+ uT A1y

AA e eT ATY
A T e
1+ /\e_}-TA‘lej

il

(15)
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In this equation ¢; is a column vector of size N + 1 filled with
zeros except element j + 1 which is equal to one. By taking the
limit of Az with A — oo we get
A*Ieje;‘-rA_l

lim Az = e]TA—le]- c. (16)

A—00
In (11) it is not only the difference in the multipliers and the bias
that determine the introduced error, but a weighted sum of these
differences that determine the error

d(x;) = wlTAalm_,'_l + u)zTAajH,,,N + Ky + Ab. (17)

The weights in (17) are equal to the row j + 1 of the matrix
A. Thus, by multiplying the difference of the solutions in mul-
tipliers and bias by the original matrix, the error after omitting
sample 7 is found.

d(x;) =

AA_Ieje;“A_1 ]
— 4 ¢

T A-1,. .
e]-A e;

e.,'efa }
e]TA—lej ;
«;
[A=1i5 (9

Instead of throwing the sample out with the smallest absolute
value of a;, the sample with the smallest absolute value of a;
divided by the diagonal element 7, j of the inverse of A should
be thrown out to obtain the smallest introduced error.

In the case of v + oo a similar reasoning can be performed.
Instead of the unregularized matrix A of (13) the regularized
matrix A, is used

A, =A+v7'L (19)
Recalculation of (13) until (18) give the introduced error
AAZe;eT AL
;)= | =212 ¢ 20
() [ e 20)

Because the regularization parameter v is not infinite anymore,
the omission of a sample also introduces an error at other sam-
ples. This directly follows from AA;1 #1

The pruning rule that is found here is closely related to
optimal brain surgeon (OBS) of Hassibi et al. [14]. The OBS
methodology finds that the weight that can be omitted to be the
weight that minimizes

. Wy
min [H_l]qq

in which w, represents the weight ¢ and I represent the Hessian
of the error surface with respect to the weights. If the quadratic
error increase is used, as done with OBS, the Hessian that is
found in our case equals AT A. The difference can be explained
by the fact that in our case the absolute error is used.

@n

1V. EXAMPLE

The case that will be considered is the learning of the non-
linear state dependent effects of a linear motor. These effects,
friction and cogging, act on the input of the linear part of the
plant and can be measured considerable well. The motor has
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Fig 5 Sum squared error introduced due to the pruning of both methods.

performed several movements and the magnitude of these ef-
fects are measured as well as the states on which they depend.
After the measurement of these values, the signals are filtered
such that the noise is assumed to be omitted. This corresponds to
scheme 1 of Fig. 2. The mapping that is used in this example is a
mapping that results in an approximation by first-order splines.
This gives a linear interpolation between the remaining training
samples. There is no need of regularization, because the sam-
ples are assumed to be noise-free after the filtering. Therefore,
the v is set to infinity.

We are interested in the error that is introduced by the pruning
between the target values and the approximation. This error
gives no direct information on the error between the approxi-
mation and the true value.

From the complete nonsparse solution one sample is thrown
out and the «’s for the remaining samples are recalculated. This
is repeated until no samples are left, to illustrate the growing of
the error between the pruned and the unpruned approximation.
The result of the pruning is given in Fig. 5. The error depicted
in this figure is the error between the training points and the ap-
proximation. The 2-norm is used in this figure; the infinity-norm
gave similar results. It can be observed that the minimal intro-
duced error gives a better result than the minimal error method.
This increase in difference can be explained by the fact that the
minimal introduced error searches for the sample that will in-
troduce the smallest error. If the diagonal elements have a large
variance, the use of the introduced error instead of the present
crror will significantly alter the outcome. The difference in re-
quired support vectors if the allowed pruning error is between
51077 and 5 1072 is approximate 150.

V. CONCLUSION

In this paper, a new procedure is proposed to determine which
sample can be omitted when LSSVMs are used. Instead of omit-
ting the sample that gives the smallest error now, the sample that
will introduce the smallest error is chosen.

In an example, it is shown that the minimal introduce error
procedurce outperforms the minimal error method. If the input
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data is independently identically distributed (i.i.d.) over the
input space the minimal introduced error procedure is slightly
better. If the data is not i.i.d. the method is better by far.

The calculations of the diagonal elements of a inverse is a
computational intensive. This means that the computational
load has increased using this method.

APPENDIX
CALCULATE THE SVS

The set of equations that has to be solved is

| [41= 18]

il oty ultel =l
This set of linear equations can be solved fast. But this set of
equations has to be solved repeatedly with only minor changes,
namely the omission of one training sample, making the total
calculation time large. The calculations have to be done all over
again if a sample is omitted.

However, the set of ay’s can be calculated and updated as
follows.

(22)

1) Decompose the matrix ©Q into LLT using
the Cholesky decomposition.

2) Calculate « and the bias.

3) Determine the training point that will
introduces the smallest error.

4) Downdate the matrix L and its inverse.
5) Goto 2 if the approximation is good

_enough to omit another data point.

The Cholesky decomposition decomposes a symmetric posi-
tive definite (SPD) matrix into the form §2 = LLT,in which L
is a lower triangle matrix. An algorithm to implement it can be
found in [15].

A. Calculate o and the Bias

The submatrix 2 is SPD which makes it fast to solve a system
Qz = b. This can be rewritten as LLT% = b and this can be
solved in two steps Ly = b LTz = y. Because L is a lower
triangle matrix, no pivoting is required for solving these equa-
tions.

The vectors of ones and zeros make the complete matrix on
the left-hand side no longer SPD. The block matrix inversion
lemma can be used to calculate the Lagrangian multipliers using
the SPD property of the matrix €2 [13].

The inverse of the block matrix is given

[A D}”l 3 [A-l + EA-LF

_EA™
C B _ATIF ] (23)

Avl

withA = B-CA D, E = A'Dand F = CA™! The
solution for «v and b are

- = -1
o= (srl — (i”Tsrll) TTQ“> y

b= ((TTQ_IT)MI TTQ_l) Y.

24
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In [16]. an algorithm is given to calculate it for classification
problems. but this algorithm can be altered to use for function
approximation.

B. Determine the Training Point

To determine which training point might be omitted, the di-
agonal of the inverse should be determined next to the «. Be-
cause the matrix 2 = LLT, the inverse of 2 equals ol =
(LLTy"' = L='" L=! To calculate the inverse of €, it is suffi-
cient to calculate the inverse of L. This inverse can be calculated
with [17]

S =-——

li;
=

lii k=

;-

(25)

1
Sij lik~5'1cj
1

In this equation / is an clement of the matrix L and the s is an
clement of the inverse of L. The diagonal elements of the inverse
of ) are given by

i
_ § ,2
O = Sik-

k=1

(26)

In this o is an element of the inverse of §2. The complete inver-
sion of L only has to be calculated the first time, afterwards only
a part of the inverse matrix has to be changed.

By using the diagonal elements of the matrix €2 instead of the
complete matrix, a small error is introduced. Because the « is
divided by this value and only the smallest of this division is
important, the influence of this error is small.

C. Downdate

After it is determined which training sample will introduce
the smallest error, this sample should be omitted from the
training set. The removal of a training sample means it’s re-
moval from the target set and the removal of the corresponding
row/column in the matrix §2. This requires the decomposition
matrix L to be updated. The updating of L can be done without
the complete recalculation of L.

If the original matrix and its decomposition are given by

27

Then. from @ = LLT, the following relations are obtained:

RRT =4 P Tp=a
RP" =B Ppimr=p
Rp=c NNT 4 72eT 4+ PPT = C. (28)
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If the row [a? o 7] and the corresponding column are
deleted from the matrix €2 the new matrix and its decomposi-
tion are given by

A B R
anw = new — (29)
BT C r
and the following relations should hold true
A=RR"
B =RPT
C =PPT +QQ". (30)

The relations before and after the update show that the subma-
trices R and P’ do not change by omission of a row/column. The
matrix () satisfies QQT = NNT +x7T. This can be calculated
by a Cholesky update [18].

The inverse of an lower triangle matrix is given as [13]

A 0] A! 0

C B T |-B-lcA™t BT|”
It was argued that only the lower right corner of the matrix L
changed due to the omission of a sample. This corresponds to

the submatrix B in the equation above. Therefore only those
parts of the inverse should be updated in which B is present.

(€2
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Introduction.

T present memoir is the outecome of an attempt to obtain the conditions under
which a given symmetric and continuous function «(s,¢) is definite, in the sense of
Hitsert.* At an early stage, however, it was found that the class of definite
functions was too restricted to allow the determination of necessary and sufficient
conditions in terms of the determinants of §10. The discovery that this could be
done for functions of positive or negative type, and the fact that almost all the
theorems which are true of definite functions are, with slight modification, true of
these, led finally to the abandonment of the original plan in favour of a discussion of
the properties of functions belonging to the wider classes.

The first part of the memoir is devoted to the definition of various terms employed,
and to the re-statement of the consequences which follow from HItperr's theorem.

In the second part, keeping the theory of quadratic forms in view, the necessary
and sufficient conditions, already alluded to, are obtained. These conditions are then
applied to obtain certain general properties of functions of positive and negative type.

Part 111, is chiefly devoted to the investigation of a particular class of functions of
positive type. In addition, it includes a theorem which shows that, in general, from
each function of positive type it is possible to deduce an infinite number of others of
that type.

Lastly, in the fourth part, it is proved that when «(s,¢) is of positive or negative
type it may be expanded as a series of products of normal functions, and that this
series converges both absolutely and uniformly.

* ¢Gott. Nachr.’ (1904), Heft T.
VOL. OCIX.—A 456. 18.10.09



416 MR. J. MERCER: FUNCTIONS OF POSITIVE AND NEGATIVE TYPE,

— EDUCTION M Hirserr's THEOREM.
Parr I.—Dzrintrions aND Debpucrions rroM H s T EM.

§1. Let «(s,t) be a continuous symmetric function of the variables s,¢ which is
defined in the closed square a =s=b, a =¢=0; and let ® be the class of all functions
which are continuous in the closed interval (@, b). When the function 6 ranges
through the class ©, there are three possible ways in which the double integral

o~ b
| [t 05 0.) dsar
may behave :— ’
(i) There may be two members of ®, say 6, and 6,, such that

f Jb K (s,t) 0, (s) 6, (¢) ds dt, jb Jb K (s, 2) B (s) B, () ds dt

a

have opposite signs ;
(i1) Kach function # may be such that

(2
[ Trisno@e@dsaz=o;

(1) Each function ¢ may be such that

b b
[ Trnomomdsa=o
This suggests a classification of continuous symmetric functions defined in the
closed square. We shall speak of those which have the property (i) as functions of
ambiguous type, whilst the others will be said to be of positive or negative type,
according as they satisfy (it) or (iii).
§2. From the point of view of integral equations this classification is of considerable
importance. HILBERT has proved* that
b b 1 b 2
[T r@oo@emdsi=x __[j wn(s)ﬁ(s)ds],
ava n=l Ny a
where ¢, (). ¥3(8), ..oy P (5), ..., are a coinplete system of normal functions relating to
the characteristic function « (s, ¢) of the integral equation

Fi5) = b2 k(s $ (0

and Ay, Ag, ..oy Ay ..., vespectively, are the corresponding singular values. It follows
at once from this that, when the singular values are all positive, « (s, ) 1s of positive

* <Gott. Nachr. (1904), pp. 69-70. See also ScHMIDT, ‘Math. Ann.,” Band 63, pp. 452, 453. We
shall refer to the result given above as HILBERT'S theorem. The theorem stated by HILBERT on p. 70 of
the paper referred to can be deduced by writing 6 (s) = x(s)+ ¢ (s) in the equation written above.



