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Neural Network Models Exam Coursework
2002-2003
Deadline April 28th 2003 at 10.00 am *

This exam is based on sections 1, 4, and 5 of the paper Nonlinear Dynam-
ics and Chaos in Information Processing Neural Networks, A. B. Potapov

and M. K. Ali, Differential Equations and Dynamical Systems, Vol. 9, Nos. 3&4,

July&October 2001, p.259-319. The paper is available from the undergrad-
uate office on level 6. It describes several neural network models that have a
chaotic behaviour. They are extensions of the analog neural networks that
you have seen in the course. Read section 1. It is not necessary to look
up references for this coursework exam. Ignore anything about Hamiltonian
neural networks.

Recall the fundamental set of equations for an analog neural network:

d:l:it N ‘
M de ) = —z;(t) + Z’wijfj(l‘j(t)) + L), i=1,...,N, pu; >0,

=1

where I have used z for the state variables, and w for the weights, the
same convention as in this paper. Every trajectory of this system eventually
reaches a set of points which it visits time and again, ad infinitum. This
set of points can be just a single point in state space. This is the case that
we have used to store patterns. It can also be a curve in state space, this
is called a closed orbit. Finally, it can also be a set of points different from
a single point and a closed orbit. This is called a chaotic set. A neural
network shows chaotic behaviour if some of its attractors are chaotic sets.
You do not really need this definition of chaos to understand the paper, the
intuition I gave you in the lectures is sufficient.

The main part of your coursework is based on section 4. How can chaos
help in the exploration of possibilities (2. creation of information) (1/20)7
How would you transform a chaotic signal into a deterministic answer (5.)
(1/20)7?

The first neural network model introduced is equation (7). Why is z
called self-feedback and g the damping term? The equation (6) that is re-
ferred to is the system of dynamical equations for an analog network cited

*Post it in the appropriate locked box in the undergraduate office, level 6.
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above. At this stage, just make sure you understand the equations. The
claims made by the authors will be investigated later. Equation (8) in-
troduces another neural network model. For sigmoid function, read tanh.
Ignore TSP. Equations (9) and (10) describe the third neural network model.
In (10), F should read f, and (1+ |E|)~! is iﬁ What is the range of the
neuron states x;? The fourth and final neural network model is described
in (11) and (12). Ignore anything about bifurcation diagrams and logistic
maps.

Now read the rest of section 4, concentrating on the variety of dynam-
ical behaviour described rather than the mathematics. If the four neural
networks were used to store patterns, and if the Hebbian rule was used to
determine the weights, which network would be the easiest to analyze the
dynamical behaviour of, and to control the chaos in order to avoid spurious
patterns (5/20)? Answer this question using the theory you have seen in the
course, and the information about the models given in section 4. A reasoned
answer will take about a page. The purpose is not to guess the right answer,
but to give a proper justification.

Now concentrate on the network you have chosen. Implement a three-
neuron system, and attempt to store three patterns. To study the dynamics,
you only have to implement the equations, there are no differential equations
to be solved. The difficult part is finding the weights, and the values of other
parameters. You will have to experiment to find these. Are there spurious
states (2/20)? An exhaustive search is not required. Show, via simulations,
how you use the chaos in the pattern retrieval (6/20). Make clear what
settings you found accidentally, and which ones you found via reasoning.
If there are some accidental settings that you understand after doing the
simulations, you can pretend you found them by reasoning! The more you
show you were in control of your simulations, the higher your marks will be
on this part of the coursework.

To make sure your simulations differ from those of your friends, choose
the three most significant digits of one of the variables you use equal to the
three least significant digits of your CID number (or the day of the month
of your birthday if you have no CID number).

The Challenge. If you want to get top marks, you have to do this
challenge. However, you will get better marks for a good report without the
challenge than for a mediocre report with the challenge solved.

Read section 5 of the paper. Make sure you understand what is chaotic
n (14), from the text and figure 1. Do not worry about Lyapunov exponents.
Then read about the cart-pole balancing task. Without implementing it,
describe a learning algorithm for the cart-pole balancing (2/20), and explain
where chaos could arise (3/20). Your learning algorithm should be different
from the reinforcement learning described in section 6 of the article.

You could organize your work as follows.




day 1

day 2
day 3

day 4

day 5

Read the paper, looking up anything you don’t understand in your
lecture notes. Answer the questions that can be answered without
programming. Plan what you are going to program.

Do the programming, and debug your program.

Run the simulations, and collect the results in a form that you can
present in your report. Simulations can be in any programming lan-
guage, on any machine. The use of Matlab may simplify plotting data,
but will not give you any other advantages.

Write the report. It should be maximum six pages (single sided) a4, in
a font not smaller than 10 point. You will not get marks for anything
exceeding six pages, even if it is appendices. Font size in tables and
figures should be at least 10 point, or the tables and figures will not be
marked. Describe the problem, and how you have solved it. Describe
your simulations, but do not give programme listings. Do not give
references to the literature. Make sure you do and answer everything
that is asked for in the coursework. Do not bind the report, but staple
the pages together. Mention your name, and indicate for what degree
(e.g. MEng Elec. Eng., MEng ISE, MSc) you are studying.

Check the consistency and quality of your work. Make last minute
changes if necessary. If you feel confident and have the time, tackle the
challenge. Resist the temptation to spend more than five 8-hour days
of intensive effort on your coursework. You will not be compensated
for it in marks. Just as an exam paper requires a concentrated effort
over a few hours, this coursework requires a concentrated effort over a
few days.

Do not forget to attend on the “exam” day. This day will be advertised
in your exam schedule. Bring a copy of your report with you, and your
college security card. I will ask you one or two questions based on what you

have written in your report, to make sure that you have written it yourself.
No preparation is necessary.

Good luck.

D

r. P. De Wilde
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Differential Equations and Dynamical Systems, ‘ .
Vol. 9, Nos. 3 & 4, July & October 2001, pp. 259-319. -

_Nonlinear Dynamics and Chaos in
Information Processing Neural Networks

A. B.|Potapov and M. K /Ali
T 1 .

Abstract

We consider a number of possible roles of complex dynamics and
chaos in information processing by neural networks. First, we review
the working principles of some well-known neural networks, and then
discuss a number of approaches to utilization of chaos in neural net-
works. Our main goal is to present a novel view of the problem of chaos
in information processing. We demonstrate that chaos emerges natu-
rally in controls when a neural network forms a controlling part of a
more complex system. We show that such neural networks can enhance
efficiency by using chaos for explorations in a method known as Rein-
forcement Learning. A discussion on Hamiltonian neural networks is
also included.

1. Introduction

Artificial neural networks (ANNs) are widely used now in many engmeering
applications and research problems [17, 18, 45, 46, 59, 58, 79, 95, 97]. Since
ANNs are efficient tools for information processing, there is an ongoing quest
forimproving their performance, widening the areas of applications and finding
new working principles. About ten tears ago, attempts were made to enhance
the perfuimance of ANNS on the basis of their complex or chaotic temporal

YAMS (MOS) 2000 Subject classifications: 37D45, 92B20.
0
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260 A.B. POTAPOV AND M. K. ALI

behaviors (see e.g., [93, 34] for the review). The question is: can chaos

be useful for information processing? There are arguments both in favor

and against the question of usefulness of chaos. On one hand, activities of
the brain demonstrate complex and possibly chaotic temporal behaviors, that
suggests that maybe the brain uses chaos for sustaining life. On the other hand,
neural networks that are currently in use for practical purposes are designed
to be nonchaotic on the presumption that chaos is not needed for information
processing (though chaotic information processing systems exist, e.g., [S]).

The purpose of this paper is to reflect on the underlying principles of oper-
ation of existing neural networks from the point view of nonlinear dynamics,
to discuss a number of attempts to endow networks with chaotic behavior, and
to present a new perspective of the role of chaos in neural networks. If we
consider a neural network as an element of a larger system interacting with the
world, then dynamical chaos can emerge in rather simple models. A number
of such models are known, for example, in artificial intelligence. Moreover,
systems interacting with their surroundings need a source of ‘initiatives’ to
pursue exploration and learning from experience. Dynamical chaos can serve
as a source of such initiatives. In this work, we also discuss Hamiltonian neural
networks that have received little attention so far in information processing.

amiltonian neural networks have the advantage that their quantum analogs
can be studied.

The paper is organized as follows. First, in Section 2, we discuss definitions
and various viewpoints of neural networks. In Section 3, we consider working
principles of some existing neural networks to explain why, in the opinions of
users of these networks, complex dynamics and chaos are not necessary. In
Section 4, we give reasons why chaos may be useful. In Sections 5,6,and 7
we discuss different approaches to the problem of chaos and complex behavior
in neural networks.

2. What is an Artificial Neural Network?

In spite of the growing number of publications in the field, there is no consensus
on the precise definition of ANNs. The reason for this is that there are too
many types of them. Sometimes a more general term called “connectionism”
is used for ANNs. The term connectionism means a methodology of making
a complex system by a combination of connected elements that are similar
or identical [29]. The basic nonlinear elements of an ANN are called formal
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INFORMATION PROCESSING NEURAL NETWORKS 279

neurons are “clumped” and play the role of parameters rather than dynamic
variables. Freeman’s model of olfactory system [35] also falls into this cate-
gory. Some networks of this type will be considered in the next section.

4. Complex Dynamics as an
Attempt to Improve ANN

Atrtificial neural networks appear to be universal tools for approximations,
pattern recognition, etc. Nonetheless, difficulties may arise during their appli-
cation. For functional networks, for example, problems arise when one tries
to approximate very complex functional dependence: a too simple network
can not give proper approximation, and a too complex one amplifies noise.
This problem is called “overfitting” and it is usually solved by introducing a
special “second level” structure of a network called the modular and ensemble
networks [82].

For conventional dynamical neural networks considered above, the prob-
lems that arise most often are (1) convergence to wrong attractors (false mem-
ories), (2) too slow convergence to attractors and (3) failure to reproduce the
activities of the real brain.

Dynamics indeed has a potential for information processing. For example,
an interesting idea about its application has been proposed by A.Dmitriev et
al. [4]: an image is stored as a long cycle of a dynamical system and each
step of the cycle corresponds to an image pixel.

Another type of networks with complex dynamics emerged from the anal-
ogy between neuron or small groups of neurons and an oscillator. Such a
neural network is a lattice of coupled oscillators. It has been shown that infor-
mation may be stored and processed in the phases of the oscillators. Such an
oscillatory network may implement the principles of a Hopfield network [52]
or other types of networks, e.g., [69, 48].

The idea that neural networks can work in chaotic regimes has also been
proposed in a number of papers. A good review of the basic approaches in
this field for early 1990s can be found in [34, 93], and we shall not repeat all
that has already been reported. We shall describe several models focusing on
the basic directions of studies in this field. In order to ascertain the usefulness
of chaos, it is instructive to pay attention to the following properties of chaos
(28, 40]:
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1. Local instability. Local instability might be useful for preventing false
memories and staying off trajectories that lead to undesirable locations in the

phase space. This effect of chaos may be useful only during a transitional

period while the trajectory converges to a “true memory.” After such a transi-
tion, the dynamics should again become stable.

2. Creation of information. This may be the most attractive property of
dynamical chaos. The fact that a chaotic system behaves unexpectedly can
be used to search a new way for solving a problem. In other words, chaos
can help in exploration of possibilities. However, modern neural network
architectures can not use this property, because their desired behaviors are
predictable: always the same output for a given input. There were attempts to
use chaotic signals in algorithms for random minimization during learning of
multilayer perceptrons, but deterministic methods had the upper hand. Neural
networks capable of exploration during their learning are still to be found.

3. Wandering along attractor. This property is closely related to insta-
bility. There were attempts to use it as a tool for memory search with the
help of chaotic attractor. The trajectory wanders between images, and the
idea was to use this property for matching input data with the stored images.
Several experiments have been done and preliminary results obtained, but the
corresponding pattern recognition algorithm has not been developed.

4. Resemblance with complex behavior of the brain. A number of attempts
have been made, mainly by Freeman and his colleagues [34, 31, 32, 99] to
create a neural network with the structure resembling that of a part of the brain,
mostly the olfactory bulb. The behavior of the brain may strongly change in
time, and chaotic systems also can demonstrate a variety of behaviors. The
behavior of models used resembled experimental signals from the brain.

5. Finally, chaos may be used without any special role: we can create a
multiple-attractor system with periodic or chaotic attractors instead of a fixed
point [10]. The kind or number of a chaotic attractor can be considered as a
result of recognition, though a special decoding subsystem must be added to
transform a chaotic signal into the deterministic network answer.

—————e

In the following section, we shall consider several neural networks with
chaos.
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4.1. Transient Chaos vs False Memorjes
4.1.1. Chaotic Modifications of the Hopfield-Tank Model

One of the drawbacks of the Hopfield-Tank model is that the dynamics can
be trapped in local minima. To overcome this difficulty, a number of workers
[87, 62] have used transient chaos and noise. Recently Kwok and Smith [62]
have presented a unified approach to such neural networks. It is worth reporting
one of the examples to illustrate the basic ideas involved.

Chen and Aihara [24] have used transient chaos in a network described by

N

J=1,5#1
zZt+1) = (1-08)zt) (7)

where z(t) > 0 is the self-feedback term and 0 < B < 1is the damping term.
These equations of motion can be obtained from the equations of motion similar
Cerariae, to (6) by time discretization. Due to the last term with z(t) the system can be
chaotic. The dynamics starts with a large value of z(t) to ensure the existence
of chaos, and then z(t) is reduced according to (7) and the system can converge
to the attractor. So, the main purpose of using chaos in this type of work is to
overcome the difficulties associated with spurious states.

Another network with transient chaos for optimization problems has been

proposed in [23]. The network is again a mapping, but now with a delay

it +1) = > wif(z;(t) + L + g(zi(t) — m:(t - 1), (8)

where f is again a sigmoid function and 9(z) = aze™t*l Ina stationary state
the last term vanishes and therefore the fixed points of (8) coincide with that
of usual Hopfield-Tank model (6). ‘

The term g makes the equations of motion more complex and ensures the
chaotic wandering. Due to it the spurious stable states of the original Hopfield-
Tank network in numerical simulations became unstable, though trajectory
sometimes spent some time near them. To ensure convergence to the global
minima, authors of [23] proposed special control scheme for parameters a
and b. The experiments showed that the network successfully solved the TSP

problem.
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Another modification of the Hopfield-Tank model with additive chaos or
noise was studied in [44].

4.1.2. The Hopfield-type Network with Transient Chaos

This network was proposed in [55]. The idea is to replace a simple threshold
neuron with an one-dimensional dynamical systema;y = f(z;, u)—aneuron
with its own Trérran dynamics.

The resulting network of mappings is controlled by the system’s energy F/
via the parameter y. If the energy is high, the dynamics of the mappings is
chaotic, and when the energy becomes low, the trajectory of the mapping tends
to one of two fixed points, close to +1. Therefore, during transient phase the
system’s dynamics is chaotic, and close to the energy minimum it turns stable.
The equations of motion for each “neuron” has the form

where
%&z, E)={K(E)+|E)}mod2—1, K(E)=2(1+|E)". (10)

(chaotic behavior for |E| < 1 and regular otherwise). The parameter F is
called the local energy '

N
Ei(t) =AD" wyay(6).
J=1

The matrix w, as in the original Hopfield model, is constructed according to the
Hebbian rule (5). The definition of the local energy E; involves the parameter
A, which describes neuron interactions: when \ — O—the network splits into
NV independent mappings, and when \ = 00, one obtains the usual Hopfield
model.

Numerical experiments show, that for large values of A the system behaves
as the Hopfield model, but for moderate values (for the specific example con-
sidered in [55], A < 5) there is a difference: almost all the false memories
become unstable, and the system either remains chaotic for a very long time or
converges to one of the stored images. So, in this case chaos helps in getting
rid of false memories.
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4.1.3. Coupled Map Lattice with Nonstationary
Synchronous Clusters (cmi ) S

These networks were described in [54]. They are based upon the globally
coupled map lattice with the equations of motion

N .
z(t+1) = (1= ea)film®) + = 3 i), (1D
j=1
filz) = az®-az+z, 2<0,<4 (12)

There are two versions of this system: a-version, when ¢; = ¢, o; are
different, and e-version, when all o; = a, €; are different.@ifurcation diagram
for the mapping (12) resembles that for the logistic map.)l‘he encoding and
decoding are very simple, all positive values z > 0 are associated with the
value +1, and negative values with —1. -

The idea of the CML-based pattern recognition arose due to the fact that in
the CML (11) with o; = o and ¢; = ¢ there is a domain of parameters (¢, €),
where the network splits into synchronized clusters corresponding to periodic
behavior. For these parameters the system possesses rather high “information
preservation,” that is initial data strongly influence the subsequent behaviors,
and there is high correlation between z(t) and z(0). For larger a or smaller ¢
in chaotic state this property is lost.

The idea is to define a local energy functional E; = ~2; ) w;;z; and
use chaos instead of annealing to break unwanted correlations. The matrix w
is formed according to the Hebbian rule using the patterns £*) to be stored,
wi =y, 55“5}’“’. Then in the o -version, the dynamics of z is augmented by
the dynamics of a:

, _ J ai(t) + (@i(t) — omin) tanh(BE;) every 16 steps,
ait+1) = {ai(t) otherwise.

The value of aupin corresponds to the clustering phase. This causes dimin-
ishing of «, that is entering more ordered phase when the local energy is low
enough.

Computer experiments show that this system works as an associative mem-
ory, and its memory capacity is about 0.18 N, Similar characteristics are
obtained for the e-version of the algorithm.

Another version of pattern recognition with the transition chaos—sorder

has been proposed in [67].
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We note that this network does not use chaos for recognition. It uses wh
chaos only for some short transient period although the normal dynamics of nei
the system is non-stationary. o
4.1.4. What if Transient Never Ends or a Novelty Filter vis
There is always a possibility that chaotic transient states, under some com- fi(z)]
binations of input parameters, can give rise to a chaotic attractor or a very Th
long transient period. Skarda and Freeman [85] supposed that such a state can tic
mean “I don’t know,” that is, a neural network faces something that has not J tre
been learned (see also [55]). Such a state, like the inconsistency in bottom-up stz
and top-down patterns of ART maps, can be used in principle as a novelty filter L
to initiate the learning phase. To our knowledge examples of networks with 2
such filtering have not been published. g
4.2. Chaos in Memory Search _ be
When a trajectory moves along a chaotic attractor, it moves sequentially from ‘ re
one part to another. If we associate various parts of the attractor with dif- ‘., ar
ferent patterns, then the trajectory will wander between them. In principle, - 7’ th
this wandering can be used for the recognition or association purposes: if a : ¢
trajectory spends most of its time near one of the patterns, then the latter can be 'ﬁ : fi
considered as “recognized”, and if in the sequence of visited patterns there are E ki
stable combinations, those patterns may be considered as “associated” with h
one another. Note that sequences of patterns can be stored into a Hopfield-type p
networks. There is a possibility that chaos may help vary these combinations d
to learn new ones or to allow one pattern to participate in a number of asso- €
ciations simultaneously. These ideas have not been implemented completely, t
but some preliminary results have been obtained.
To study the linking of stored memories with one another, Tsuda [93]
proposed a model that basically resembles a Hopfield-type network. Initially, 4
patterns are stored by the Hebbian rule, but afterwards the connection matrix 2
is dynamically modified. It has been shown that association of patterns with a
one another takes place, but there is not enough control over the process. ¢
Another example of a model with associative dynamics in chaos has been r
proposed in [1] and references therein. The equations of motion had the form s
N C
zi(t+1) = kpxi(t)+ ) wi fz;(t) + y;(t)) f
J=1 I
yilt+1) = kui(t) — af(z;(¢) +y;(8) + aq, 1
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where 0 < 7,y < 1, flz) =1/(1 + e~2/¢), and patterns are stored in the
network with the help of the Hebbjap rule, wy; = 3, (2¢® — 1y (26 — 1),

formation some of the states reproduce the stored Patterns. But the network
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The studies of olfactory system have been the primary goal of W. Freeman
and his colleagues for several decades, see [99, 31, 32, 30, 85] and references

therein. After some years of biological studies of olfactory bulb, they con-
cluded that studying only the structure of neurons and their connections is not
enough to understand the neural mechanisms responsible for olfaction. For
this reason they developed a number of mathematical models for information
processing in olfactory bulb. The dynamics of the models are in qualitative
agreement with the experimental EEG measurements, and is chaotic.

The model is rather complex. Each “memory unit” is described by about
10 second-order differential equations, which describe the “specialization”
of neurons within every unit. All equations have similar form #; + Az, +
Bz; = G;, where the right hand side terms are different for different types
of neurons [99]. Some of the G; include input terms X, while others have
delayed input (dependent on past values of ). There are neurons responsible
for connections with other memory modules, and for them G; include the
term »_ K[, j]Q(z(]), where Q is a sigmoid-like function and z[j] is similar
“connection” neuron from the j-th memory module.

Information in this network is stored into the connections X [¢,j]. They
can take only two values, K i, and K. Initially, all connections are set to
Kmin» and to store pattern, for which modules 7 and J are both “active”, the
corresponding K1, j] = K3, 1] is set to K., (Hebbian rule).

The network works as follows: When there are no external signals, the net-
work oscillates chaotically on an attractor. If an external stimulus is presented
to the network, the system stabilizes onto individual parts of the attractor.
To explain the main idea, one can consider a multilobed attractor such as the
Lorenz attractor which has two lobes as the network’s “basal activity state.” By
applying an input, the network can be stabilized onto one of the two lobes. The
dynamics would still be chaotic but confined to one of the lobes only. Then the
presence of the trajectory at this lobe can be decoded into the network output,
e.g., with the help of local time averages.

Other chaotic models of olfactory bulb also exist, e. g., [6], though they are
not in very good agreement with biological experiments.

4.4. Recurrent Neural Networks as Generators of Chaos

There are works that consider neural networks just as models for some biologi-
cal phenomena or convenient forms of dynamical systems. There is no question
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of computation, approximation or associative memory, e.g., [34, 2, 3, 61, 70]
and some other. This class of neural networks falls out of our scope. Indeed, it
is not hard to construct a neural network, e.g., in a form of recurrent perceptron
(Section 3), with chaotic dynamics. Such works do not answer the question
about the role of chaos in information processing. Nonetheless, if there is such
a role, those neural networks may serve as a convenient generators of chaos
[75].

4.5. What’s Wrong with Chaotic Networks?

We have mentioned only some of the works related to chaotic neural networks
just to illustrate major directions of studies. A common feature of all chaotic
networks is that they are not used in practical applications. The only exception
is the experiment described in [100]. In contrast, multilayer perceptrons are
widely used, while chaotic networks have remained only as objects of the-
oretical studies for about 15 years. What is the reason for this? From our
point of view, the reason is the way in which neural networks are currently
used. Current uses of neural networks may be called “isolated computations.”
A neural network’s task is only to generate definite, always the same output
for a given input. Chaotic dynamics, which is unstable, can only make such
a computation unreliable. Therefore, there is no apparent room for chaos in
such a scheme.

In contrast with such neural networks, the brain always works as a part
of the body. It is involved in continuous processing of information coming
from the outside world, and it guides the body to perform actions that change
the environment. Therefore, the brain operates as a part of a closed loop:
brain—actions—world—sensing—brain. It is possible that accounting for the
embodiment of the brain can explain the advantages of operating in chaotic
mode. Also chaos may just €merge as a consequence of positive feedback in
the aforementioned loop.

Note that the problem of “embodiment of intelligence” has been intensively
discussed in Artificial Intelligence during the last 15 years, see [73]forareview.
The related approach called “behavior based robotics” or “embodied cognitive
science” led to a number of efficient practical solutions and new theoretical
concepts. Moreover, with examples of small robots controlled by a rather
simple neural networks, it has been shown that closing the loop through the
world may lead to a very complex, probably chaotic behaviors [73].
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Another natural source of complex temporal behaviors may be special
implementations of neural networks: using ensembles of coupled oscillators
to perform computation, e.g., [52, 48, 69]. In Section 7 we shall discuss this
point in more details.

5. Closing the Loop: Chaos in a
Combination of Controlling Neural
Network and Controlled System

As we said in Sections 3, 4, one of the simplest ways to obtain chaos is to take
a functional network, say a feed-forward multilayer perceptron approximating
equations of motion of a chaotic system, and feed its output back to the input.
The result is a chaotic dynamical system. However, it does not perform useful
information processing. A useful task can arise if we place between output and
input of a network a system that needs controlling (often called the “plant”).
In this section we present some rather simple examples that demonstrate how
chaos can appear in a controller coupled with a controlled system. Chaotic 3
signals can be registered at any part of the combined controller-plant system. j"
This notion may partially explain the appearance of chaos in the activities of
the real brain.

Here we are referring only to chaos emerging in the course of information
processing. In the next section, we will consider the importance of chaos in
the learning process of a controller-plant system.

Let us consider a dynamical system

e o Sl

T = Az + f, A > 0. (13)

For f = 0 it has an unstable equilibrium point z = 0. Suppose that we can
control this system by applying the "force” f at the discrete moments of time
tx = 7k. Then the force remains the same until the next switching. The
absolute value |f| = f, always remains the same, we can only change its
direction. Our goal is to keep the trajectory in the vicinity of the point z=0.
So, at every t;, we know z(tx), and we have to make a decision regarding the
direction at which the force should be applied.

This is a simple problem. Let us write z,, = z(¢). Since fi, = f(zy)

remains constant until t.1, (13) gives: Ty, = e*xy, + (e — 1)%. It is easy
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Figure 1. Mapping resulting from discrete control of unstable fixed point and
an example trajectory. .

to check that the choice f;, = — fosgn(z) solves the problem, and we obtain
the following one-dimensional mapping

AT > 6’\7-—1 f
Trr1 = g(Tk), g(r)={zhz+ﬁ’ i;g A:(_‘A—)_O‘ (14)

The plot of g(x) is shown in Fig. 1. It can be seen that the trajectory remains
near the unstable point provided |z(0)| < fy/\. Since dg(z)/dz = '™ > 1,
a chaotic attractor is born with the Lyapunov exponent equal to A.

The control of the system can be performed by a “network” with a single
threshold neuron that receives input x; and generates the signal =1 , showing
the direction of the force. As the attractor is chaotic, the sequence of the neuron
outputs will look random. The source of this randomness is a discrete control
of an unstable equilibrium.

This example explains the main idea, but it has two obv10us shortcomings:
(i) there is no learning, and (ii) there is no true need for the use of a neural net-
work. Let us consider more complex examples related with discrete controls.
Numerous examples of such problems can be found, e.g., in the literature on

machine learning [65].
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Figure 2. The cart-pole balancing task. Controller should choose the proper
direction for f after each time interval 7 such that the angle 8 for the pole
will remain within [—8 .y, Omax]» and the cart never hits the ends of the track,
—Zmax < T < Tmax. Inthe beginning the cart is positioned at the middle of the
track z = 0 and the pole is set at some angle 8, which is within the admissible
limits.

The easiest generalization is an inverted pendulum that need to be kept
close to its highest point. However, it can be shown that this problem reduces
to the above example — the unstable manifold of the fixed point of the inverted
pendulum is one-dimensional.

A more interesting problem is that of cart-pole balancing, one of the well-
known benchmark problems in machine learning [64, 12, 46]. There is a cart
that can move along the line from —Z .y t0 Thax. A pole is attached to the
cart with one end such that it can rotate in the vertical plane parallel to the
line of motion of the cart. If the pole is set almost vertical, while falling, it
moves the cart. If one pushes the cart, the push affects the pole dynamics as
well. That is, by moving the cart, one can change the position of the pole.
The state of the cart-pole system is determined by z (coordinate of the cart), =
(velocity of the cart), & (inclination angle of the pole from the vertical), and 6
(angular speed of the pole), see Fig. 2. The task of control is as follows: After
every time interval 7, the controller receives the values of the cart-pole state
variables r, &, 6 , 6. The controller can apply a force equal to = f to the cart
that acts during the next 7-interval. The task is to keep the angle 6 within the
limits [~ fmax, Omax], and the position of the cart  within [—Zmax, Tmax-
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At the first glance this problem seems equivalent to the control of the :
inverted pendulum. However, if one tries to apply the-same control algorithm,
the cart very soon hits the end of the track. So, it is necessary to control the cart
position as well, but there is no “obvious” control policy that should be learned.
In the next section, we consider the details of such learning. Here, we only
mention that the policy for neural network controller has been obtained [77],
and the resulting regime is chaotic with one positive Lyapunov exponent. We
registered (see Fig. 3) activity patterns from several neurons of the controller
and calculated their autocorrelation functions. They look chaotic, though the
neural network architecture (a Kohonen-type network) does not possess any
complex dynamics. Similar results were obtained for another model control
task — stabilization of an unstable chemical equilibrium [77].

So, chaos may arise in complex feedback loops where a neural network
plays the role of a learning controller. One may ask: can chaos be useful for the
information processing or for learning? The results of our models show that
the answer is yes, but to explain it we need to describe the idea of reinforcement

learning.

6. Chaos and Reinforcement Learning

6.1. What is Reinforcement Learning?

In most books on neural networks two types of learning are considered, super-
vised and unsupervised learning. If for every training input X the correct
output Y is known, and this knowledge can be used for updating the weights
of the network, the learning is called supervised learning or learning with
a teacher. Examples of supervised learning include all functional and most
dynamical networks. If learning proceeds without a teacher that can provide
the correcting signals, then it is called unsupervised learning. For examples
of unsupervised learning see, for example, Kohonen and ART networks. In
addition to these two types of learning, an intermediate situation is possible
when some evaluation of the network performance can be done, but the correct
answer is unknown. Usually, such an evaluation of performance comes in the
form of a scalar ‘reward’ r : forsuccess r > 0, for failure r < 0, and for neutral
case r = 0. The corresponding learning is called reinforcement learning or
learning with a critic. This type of learning is rarely used in traditional neu-
ral networks. However, it is very valuable in situations where one knows the



