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Special instructions for invigilators: None

Information for candidates:

e All functions are sufficiently smooth.

o Vf denotes the gradient of the function f. Note that Vf is a column
vector.

e V2f denotes the Hessian matrix of the function f. Note that this is a
symmetric square matrix.

e Let f: IR™ — IR. A level set of f is any non-empty set described by
La)={zeR" : f(z) <a},

with a € IR.
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1. Consider the problem of minimizing the function
Flz) = 223 — 323 — 62179(21 — 72 — 2)

(a) Compute the stationary points of the function. 4]

(b) Using second order sufficient conditions classify the stationary points
determined in part (a), i.e. say which is a local minimum, a local maxi-
mum and a saddle point. 6]

(c) Consider the minimization of the function f using the gradient algo-
rithm. Express analytically the form of the generic iteration, i.e.

Pk+1 =P — aVf (%)

(where p; = [z}, 23]7). (2]

(d) Equation (%) defines a nonlinear discrete time system with equilibria
coinciding with the stationary points of the function f.

Consider the linear approximation of system (x) around the equilibrium
corresponding to the local minimum of the function f. Show that there
exist a value of a > 0 such that the eigenvalues of such a linearized
system are both in modulus smaller than 1. (Hint: try a small positive
)

Interpret the obtained result in terms of convergence properties of se-
quences generated by the gradient algorithm and initialized close to a
local minimum. 18]
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2. (a) Describe how Newton’s method can be used to compute the solutions of
a system of nonlinear equations. 6]

(b) Consider the equation
4 2x+c=0

and assume b — ¢ > 0. Using the results in part (a), write the Newton’s
iteration for the computation of solutions of the considered equation.
Show that the iteration is well defined, i.e. if zg is such that g+ > 0
then zx + b > 0 for all k, whereas if zg is such that zg + b < 0 then
zr + b < 0 for all £. 8]

(c) Consider the problem of computing an approximate numerical value of
V3. This is equivalent to computing an approximate solution of the
equation 2 — 3 = 0. Write the Newton’s iteration associated to this
problem. Let {z1} be the sequence generated by the algorithm initialized
at o = 1. Evaluate numerically the elements z1, z9, 13 and z4 of this
sequence. Show, computing the relative approximation error

T4 -3
B

that x4 is a very accurate approximation of v/3. 6]
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3. Consider the minimization problem
min 'z +2d'z
{ r—a2=0
with z € IR™, a > 0 and the vector d # 0.

(a) Write the first order necessary conditions of optimality for such a con-
strained optimization problem. [4]

(b) Using the conditions in part (a) compute candidate optimal solutions.
Compute the corresponding optimal multiplier. Finally show, using sec-
ond order sufficient conditions, which of the obtained candidate solutions
is a local minimum. 18]

(c) Suppose z € R?, i.e. x = (z1,Z2). Set 1 = acosf and z3 = asiné,
with § € (—m,n]. Show that with the above selection the constraint
2’z — a? = 0 is automatically satisfied. Then, compute the expression of
the function to be minimized in terms of # and compute its stationary
points. Compare the obtained result with the results in part (b).  [8]
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4. Consider the optimization problem

min —7 — Z9
1,72
-1+z2+22<0
(a) Write the first order necessary conditions and second order sufficient
conditions of optimality for such a problem. Verify that all admissible
points are regular points for the constraint. Hence determine candidate
optimal solutions. 8]

(b) Transform the considered minimization problem into an unconstrained
minimization problem using the method of the sequential penalty func-
tions. [4]

(c¢) Write the necessary conditions of optimality for the unconstrained prob-
lem in part (b). Hence compute approximate candidate optimal solutions
for such an unconstrained optimization problem and compare the results
with those obtained in part (a). (6}

(d) Discuss the feasibility of the candidate optimal solutions computed in
part (c). (2]
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5. Consider the discrete time system
Tpe1 = Azg + Bug

with £ = 0,---,M, z € R", ux € R and z(0) = zo. (Note that A € R™*"
and B € IR™*1.) Assume that the square matrix

C= [A"‘lB, - ,AB,B]
is invertible. Consider now the problem of determining the vector
U = [ug,ur, - upr—1)
such that the cost
1
JU) == (u%+uf+---+u%4_1)
2
is minimized and the end-time condition
(M) =0

holds.

(a) Pose the above problem as a constrained optimization problem in the
decision variables [ug,u1, -, up—1] and parameterized by zo. 4]

(b) Show that if M = n then the considered optimization problem has only
one feasible solution, i.e. there is only one selection of [ug,u1, -+, Upr—1]
such that the end-time condition holds. [4]

(c¢) Suppose M = n+ 1. Show that the considered constrained optimization
problem can be transformed into an unconstrained problem in the deci-
sion variable ug. 8]

(d) Solve the unconstrained optimization problem in part (c). 4]
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6. Consider the optimization problem

{ min 12
1,72

z?+z3=1.

(a) Sketch in the (z7,z2)-plane the level surfaces of the function to be min-
imized and of the admissible set. 6]

(b) Compute an exact penalty function for the considered minimization
problem. 2]

(c) Compute the stationary points and the minima of the exact penslty
function constructed in part (b). Hence construct a solution of the con-
sidered constrained optimization problem. [10]

(d) Let z* be the constrained minimum computed in part (c). Using the
first order necessary conditions of optimality construct the corresponding
optimal multiplier A*. 2]
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