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OPTIMISATION

L. Consider the problem of minimizing the function

1

y l
g pl
x%""" —X1X2+ Exi,

flx,x) =

2n+2
where 7 is a positive integer.
a) Compute all stationary points of the function. [ 4 marks ]
b) Using second order sufficient conditions classify the stationary points deter-
mined in part a), i.e. say which is a local minimum, or a local maximum, or a
saddle point. [ 8 marks ]
c) Show that the function f is radially unbounded and hence compute the global
minimum of f. Is the global minimizer unique? [ 4 marks ]

d) Consider the point £ = (0,0) and the direction

Show that the direction d is a descent direction for 1 at Fy. [ 4 marks |

2. Consider the problem of approximating a matrix Q € R"*” with a matrix of the form
A = pl, with [ the identity matrix of dimension » x n and p > 0.

As a measure of the distance between the two matrices we could use either the square
of the Frobenius norm or the infinity norm. The Frobenius norm of a matrix L € R"*"
is defined as

where the L;;’s denote the entry of the matrix L. The infinity norm of a matrix L € R"*"
is defined as

72

n
co :m‘:dXZ!LJA
7=1

The optimal approximation problem is thus the problem of determining the nonnegative
constant p which minimizes

10— pIl7
or
10— p!.
a) Show that the considered optimal approximation problems can be written as
constrained minimization problems with one inequality constraint. [ 2 marks ]
b) Consider the Frobenius norm. Solve the problem derived in part a). Show that

if trace(Q) > 0 then the optimal p is positive, and if trace(Q) < 0 then the
optimal p is zero.
(The trace of a matrix is the sum of its diagonal elements.) [ 6 marks ]
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c) Consider the infinity norm and assume that n = 2, hence

2
o-[5 8],
that 0 < Oy < 02 and that |Q)2] = |Qa1].
1) Sketch the graph of the function to be minimized. [ 4 marks |
ii) Argue that the optimal solution p, is such that

0 <01 <pe <022

[ 4 marks ]
ii) Compute the optimal solution p,. [ 4 marks ]
3. Newton’s method for the minimization of a function f : R — R is based on a quadratic

approximation of the function at a given point. An alternative way to construct a
quadratic approximation that does not require the computation of the second deriva-
tive is to consider an approximation based on the knowledge of two points x; and x;_

and of the values f(x;), Q’—’% and % Such an approximation is given by
- df(-1)  df () )
= VALY dc  dx  (x—x
o) = Fl)+ 5 o) 4 — T
a) Show that the function ¢(x) is such that
e dq(xe) _ df(x) dq(xe-1) _ df(xe1)
q(xk) = flxk), e = e,
[ 4 marks ]
b) Compute the stationary point x, of g(x). [ 2 marks |
c) Consider the algorithm, known as the method of the false position, obtained by

setting x4 = X., with x, as in part b), and argue that this algorithm provides
an approximation of Newton’s method that does not require the computation of

the second derivative of f. [ 2 marks ]
d) Show that the method of the false position applied to the minimization of
a quadratic function f = ax? 4+ bx + ¢, with a > 0, coincides with Newton’s
method. [ 4 marks |
4
e) Consider the function f = % -+x. This function has a global minimizer at
x=-1.
i) Show that the method of the false position yields the iteration
1
3
Xerl =% — (2 + 1 :
= k= (% )xf__, + xx 1xk+xﬁ
[ 2 marks |
11) Evaluate
[Get1] _ w1 +1]
&2 (xe+1)2
and show that if lim;_,..x; = —1 then
lim !‘9"'2" =1.
ke &F

Hence, quantify the speed of convergence of the method. [ 6 marks ]
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4,
a)
b)
c)
d)
5.

a)

b)

d)

Optimisation

Consider the optimization problem

minx% +x2,
X1.%2

Sketch in the (x;,x2)-plane the admissible set and show that there is a point

which is not a regular point for the constraints. [ 4 marks ]
State first order necessary conditions of optimality for such a constrained opti-
mization problem. [ 4 marks ]
Find candidate optimal solutions for the considered problem. [ 8 marks ]

Prove that the non-regular point for the constraints is the global minimizer for
the considered problem. [ 4 marks ]

Consider the optimization problem

min x3 +x3,

X1, 02

—-x; £0,

x—x1—1=0.

Sketch in the (x;,x;)-plane the level surfaces of the function to be minimized
and the admissible set. Hence show that all points in the admissible set are
regular points for the constraints. [ 4 marks ]

Using only graphical considerations, determine the solution of the considered
problem. [ 4 marks ]

This constrained optimization problem can be transformed into an unconstrained
optimization problem by defining the so-called mixed penalty-barrier function

S e

£ X
with £ > 0 and considering the unconstrained minimization of F¢(x},x2). De-
termine the stationary points of F¢(xy,x2). (Hint: solve Vy,Fe(x1,x2) = 0 for
x2, and replace the obtained solution in the equation V,, F¢(x;,x2) = 0. Solve
this last equation assuming that x| = ae!/ 2 for some ¢ > 0 to be determined,
and neglecting all terms &*, for k > 1/2.) [ 10 marks ]

Show that the stationary point of F(x,x2) computed in part ¢) tends, as € tends
to zero, to the optimal solution determined in part b). [ 2 marks ]



6. Consider the optimization problem

b)

c)

d)

e)

Optimisation

min xjxz,
X1, X2

1

State first order necessary conditions of optimality for such a constrained opti-
mization problem. [ 2 marks ]

Using the conditions in part a) determine candidate optimal solutions for the
considered problem. [ 6 marks ]

Transform the minimization problem into an unconstrained minimization prob-
lem using the method of the exact augmented Lagrangian functions and write
explicitly the exact augmented Lagrangian functions for the considered prob-
lem. [ 4 marks |

Show that the candidate optimal solutions determined in part b) are stationary
points of the exact augmented Lagrangian function. [ 4 marks |

Find the global minimum for the considered problem. Is the global minimizer
unique? [ 4 marks ]
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Optimisation - Model answers 2007
(Note to external examiners: all questions involve mostly applications of standard methods
and concepts to unseen examples.)
Question 1

a) The stationary points of the function f are computed by solving the equation

2n4-1
i —z
0=Vf= { 1 3 }
—I + &9
The second equation yields x5 = z1, hence the first equation becomes

0 =g — gy = zy(z? - 1).

The (real) solutions of this equation are xy = 0, 1 = 1 and z; = —1. In summary, the
function f has three stationary points

R;:(U,O) ‘Df,':(]:l) PCZ(_I‘J—'J'J‘

b) Note that (recall that n is a positive integer)

2, | 2n+1)zin -1
sz_[ Qo 1}

Hence
5 B 0 —1
Vf&ﬁ—[_l 1}

which is an indefinite matrix, and

sz(ﬁ,)zv2f(ﬁ_)= [ 2n+1 —1 } > 0.

-1 1
As a result P, is a saddle point, and P, and P, are local minimizers.
c¢) Note that

— 1 2n+2
2+ 271

f

L 3
gt gl (.L% — x1x0 + -5:175 g

1 2
~ Rt S e T

The function

1 2n+2 2 2 ( 1 n )
] -z =19 my =l
42} * ST

is radially unbounded, as a function of z; alone, and the function :1:% — T1T9 + {;'nﬁ is
radially unbouded as a function of x1 and zs. As a result the global minimum of f is
also a local minimum. Note that (recall again that n is a positive integer)
f(B) = f(B) = —5" <0
A= “7 2n+1 ’

hence both P, and P, are global minimizers.



d) The point Py coincides with the saddle point P,. The function f along the direction d
is given by
3 1 -
— — n+2 - 2
6(0) = f(@,0) = T a?™? — ~a
Note that ¢(0) = 0 and that ¢(a) < 0 for & > 0 and sufficiently small (namely for all
@€ (U, (n+ l)ﬁ), hence d is a descent direction for f at P,.

(Note that ¢(a) is negative also for a € (—{n + 1)2%10)1 ie. —d is also a descent
direction for f at Py, but this is not requested.)



Question 2
a) The optimal approximation problems can be written as

min |Q — pI|% min ||Q — pI
s B, g, AR
p=>0 p=0.

b) Note that
1@ — oIt = (Qu—p2+Q%+ - +Q3+
Qh+(Qu—p 2 +Q5%+ - +Q3, + -+ Q2+ + Q3,1+ (Qun— p)?
hence

trace(())
1Q — pI||% = np®> —2p ’(Qll + Qo+ -+ Q,m)‘ + constant terms.

If trace(Q) > 0 the function ||@Q — pI||%, which is convex, has a global minimum for

“w:;(Q). If trace(Q) < 0 the function ||Q — pI||% is monotonically increasing for

p = 0, hence it achieves its minimum, in the set p > 0, for p = 0.

p=

c¢) The optimal approximation problem is now
b o [ min (max(Qu - 4l +1Qul, Qa1 + 1G22~ )
p> 0.

A sketch of the function to be minimized is in the figure. From this, it is clear that
0 < Qq1 < p. < Q4. Note that p, is such that

Q11 — pu| + |Q12] = |Q21] + | Q22 — pul-
However, because 0 < Q11 < p. < (Q22 this can be rewritten as

px — |Qu1| + Q12| = |Qa1] + Q22| — P
As a result (recall that Q11 > 0, @22 > 0 and Q13| = |@21])

 Qu+Qx
=



max(|Q11 — p| + [Q12l, [Q21] + |Q22 — p|)

3
///
yaui
1Q11 — pl + |Q12] /
Q12| + |Qa2 - sl
Iig)= Qg | preesrresassarie

Qu fa Qaz 4



Question 3
a) Setting x = xy, in ¢(z) yields q(zx) = f(2). Note that

dals) ) df (xe—1)  df (xx)
dx N dz w ;jk—l — Tk (:B . IBk)

hence, setting = = zy and = x_1 yields

dg(zy) _ df(zi) dg(zr—1)  df(zr—1)
de ~  dr dzx N dx

b) The stationary point z, of q(z) is obtained solving the equation

dq(x)
dr

=0,

which yields

df (zh—1)  df(zi)\
dx dx df (vk)
Zpo1 — Th dr

Ty =Tk —

c¢) The method of the false position is therefore given by

df (k1)  df(z)\ #ud
G s dx dz Lk
. e Th_1 — Tk dz

This algorithm is an approximation of Newton’s method because the quantity

df(@pr)  df (o)
dx dx
L1 — Iy

2 £,
is an approximation of d—di(gﬁ at © = x. Note however that, unlike Newton’s method,

the method of the false position does not need the computation of the second derivative:
it uses an approximation.

d) For quadratic functions one has

& f ()
=2
da? “
and _
df (@) df(ae)
dr do_ _ (2azp_1 + b) — (2azy + b) — 9
Tk—1 — Tk Tk—1 — Tk '

hence, for such functions, Newton’s method and the method of the false position coin-
cide.



4 d - .
It = s + & then —%(;r—) =z3+1, and replacing in the expression of the considered
method yields ’

Tk—1 — Tk 3 L1 — Tk, 3
Tyl = Tp — - ($k+l):$k——'———(£k+1)s
(zp_;+1)— (z3 +1) Tp_ — T}

hence, noting that

T — = (Xp_q — 1) (@2_; + Tp_1zk + T2)

vields
1
3
Tpery =Tk — (Th + 1)— .
i & ( k );L'ﬁ_l —l—:r:k_.lz:k-{-xﬁ
Note that .
Tpp1+ 1= zp+1—(z3+1 -
k+1 k (z) )Ii—l+$k—1$k+$£
T+ Zp-1—1
= (zp+ 1)(Tp-1+1 4
( B )( b=l )$§_1+;1:k_1$k+:cﬁ
hence
|Eet1l _ |Th-1+1 T+ zp_1—1
& zp+1 22 +apmk+ap|

If  — —1 then also 1 — —1, hence |£_E—£L| = 1, which shows that the algorithm has

k
quadratic speed of convergence (if it converges).



Question 4

a) The admissible set is the set outside a circle of radius one and centered at (0,1) and
inside a circle of radius two and centered at (0,2), which is the shaded region in the
figure. The point (0,0) is not a regular point for the constraints because at this point
both constraints are active and their gradients, namely

21 21,
2(xa—1) 2(x2—2) |’

cvaluated at the point, are linearly dependent.
T 2

\ - (0,1)

- —
(0.0) z

b) To write necessary conditions of optimality rewrite first the constraints as
1-22 —(z3-1)2%<0 i+ (23 -22%-4<0
and define the Lagrangian function
L(z1, %9, p1, o) =23 + 22 + 1 (1 — 23 — (23 — 1)2) + po(z? + (z2 — 2)% — 4).

The necessary conditions of optimality are

j—i = 2z1 — 2121 + 2p0wy =0 é% =1-2p(z2 — 1) +2u(r3 —2) =0
1—zf—(22—-1)2<0 i+ (1222 -4<0
1 =0 p2 =0
pml—a? —(za—-1)2)=0 p2(z? + (22 —2)2 —4) =0.

c¢) To find candidate optimal solutions we exploit the complementarity conditions, hence
we have four possibilities.

e 1y =0and psz = 0.
dL

This selection yields 0 = 1 = 1, hence no candidate optimal solution.



o py=0and z} + (z2 — 2)> -4 =0.

This selection yields, from 0 = a%’ either zy = 0 or py = —1. The first option
yields xg = 0 or xy = 4, whereas the second option violates the positivity of pus.
Moreover, the selection z; = 0 and z5 = 4 yields, from 0 = ?;%’ p2 < 0, hence it

is not a candidate solution.

o 1 -2}~ (22— 1)2=0and py = 0.
This selection yields, from 0 = i—ﬁ, zy = 0 or gy = 1. The first option yields
23 = 0 or x5 = 2. The second option yields, from 0 = ;}%, z9 = 3/2, hence, from
1—a23 — (12— 1% =0, 1 ::tlg.

e 1—z}—(z2—1)?=0and 23 + (22— 2)2 -4 =0.
The only point consistent with these conditions is (0,0).

In summary the candidate solutions obtained so far are as follows.

e (0,0).
e (0,2).
o (i@,%)

Hence there are four candidate optimal solutions.

The nonregular point (0,0) is such that 22 +z5 = 0. Note now that the function 2425
is always nonnegative in the admissible set and it is zero, in the admissible set, if and
only if z; = x93 = 0. Hence the nonregular point is a global minimum for the considered
problem. Note that it is not possible to associate, in a unique way, a pair of optimal
multipliers to this optimal point.



Question 5

a) The admissible set, and the level surfaces of the function to be minimized are as in
the figure. There are two constraints active at the point (0,1) and their gradients, at
this point, are independent. At any other admissible point there is only one active
constraint, the equality constraint, and its gradient is always nonzero (it is a constant
vector). Thus all points are regular points for the constraints.

b) The optimal solution is obtained considering the smallest circle centered at the origin
intersecting the admissible set. Hence, the optimal solution is the point (0,1).

¢) The stationary points of the mixed penalty-barrier function are the solutions of

2 €
9y — 2(zg—11 — 1) — —
T E(z z1 — 1) 2

2
219 + ;(:rg —z1-—1)

Solving the second equation yields

r1+1
e+1"7

Iy =

and replacing this in the first equation yields

0— 232 +4) + 223 — (1 +¢€)
B (e+1)z] '

Setting x1 = a,/e and neglecting all terms €*, with k > 1/2, yields 0 = (202 — 1), hence

(recall that a > 0) =1 = Ve/2, and 73 = 3@

e+1

d) As € — 0, the stationary point of the mixed penalty-barrier function tends to (0, 1),
which is the optimal solution of the considered problem.



Question 6

a)

b)

Define the Lagrangian
1 ;
Lz, 22,) = 2172 + )\(i-a:f + 223 - 1).

The first order necessary conditions of optimality arc

dL
T RS, S 0= 2L o 4 s
dzy dxo

b =
=
o
+
o
]
b b
[
—
Il
o

The conditions d%% = ég; = (0 can be rewritten as

b a]lz]-e

If 4\ — 1 # 0 the above equation implies z; = 5 = 0, which is not an admissible point.
If4X2—-1=0,0r A = i%. then o9 = :F%:Bh and replacing in the constrains yields the
candidate solutions with the corresponding multipliers

S| 11
(“Cl}xg?}‘)_ (11_575) ($11$23A)_ (_11515)

1 1 1 1
(z1,22,A) = (1, 57—;) (z1,22,A) = (—1, &5’_5) ;

The exact augmented Lagrangian function for a constraint optimization problem with
equality constraints is

S(@.2) = £(@) + Xg(a) + Zlg@)? + 1l 2220, Lz )2

with € > 0 and 7 > 0. Hence, for the considered problem, we have

2
S(z1,22,A) = $1$2+A(%$%+2$§—1)+%(%w?—kkg—l)z%—n ([ x Azs ] ;ZI;\;:Z ])
The stationary points of the function S(zy,z2,)) are the solutions of the equations
0:= gx—sl = T3+ Az + %{%mf +223 — 1) + 29(52129 + Aaf + 16Ma3)(5z2 + 2221
0= f_i =1 +4Azy + %{%T‘f + 223 — 1) + 2n(5z122 + Ao + 16A23) (5z1 + 32A22)
0= % = %a‘f + 223 — 1 + 2n(5a122 + Aad + 16A23) (22 + 1623).

Replacing the candidate points obtained in part b) shows that indeed they are stationary
points for the augmented Lagrangian function. (Note that this is true for any € and 7.)

To find the global minimum we evaluate the function to be minimized at the candidate
optimal solutions:

1 1

(xlxa):c1=l,.t2=—1/2 = T (xlxz):cl:-—l,mg-—:l,ﬂ =5
2 2

1

(wlmZ)mlz—l,zgz—l/Q =3

b | =

(1171:1,‘2),;1:1,;1.-2:1/2 =

Hence, the points (1,—1/2) and (—1,1/2) are both global minimizers. (Note that the
points (1,1/2) and (—1,—1/2) are both global maximizers.)
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