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OPTIMISATION

1; a) An electrical engineer wants to maximize the current I between two points A
and B of a complex network by adjusting the values x; and x; of two variable
resistors. The engineer does not have a model of the network and decides to opt
for this procedure.

° Keep the value x; fixed and adjust x| to maximize /.
° Keep the value x; fixed and adjust x; to maximize /.
° Repeat the above steps until no further improvement can be obtained.

Explain if this approach has sound theoretical basis: i.e. discuss under what
assumptions the above procedure determines a stationary point of the function
I. [ 6 marks ]

b) Let f: R" — R be a differentiable function. Suppose that x, is a local minimum
of f along every line that passes through x,, i.e. the function

§(@) = f(x. +ad)

is minimized at ¢ = 0 for all 4 € R".

i) Show that V£ (x,) = 0. [ 4 marks ]
ii) Is x, alocal minimum of f? [ 2 marks ]
iii) Consider the function

F(x1,x2) = (x2 — 23) (22 — 242).

Show that the point (0,0) is a local minimum of f along every line that
passes through (0,0). Show that the point (0,0) is not a local minimum

meR) [ 8 marks ]

2 Consider the problem of minimizing the function

1 1
f(x;,xg) = —x% — C!x? + —x? +X1X2 +x%,

3 4
where ¢ is a constant.
a) Compute all stationary points of the function. [ 6 marks ]
b) Let @ = 5/12. Using second order sufficient conditions classify the station-
ary points determined in part a), i.e. say which is a local minimum, or a local
maximum, or a saddle point. [ 10 marks ]
c) Let o = 5/12. Show that the function f is radially unbounded and hence com-

pute the global minimum of f. Is the global minimizer unique? [ 4 marks ]

Optimisation 1/3



3. Consider the problem of minimizing the function

f(x) =x—logx,
with x > 0.
a) Compute analytically the minimum of f. [ 2 marks ]
b) Write Newton’s iteration for the proposed algorithm. [ 2 marks ]
c) Consider the Newton’s iteration in part b) with initial point xo = 1.99. Compute

ten steps of the Newton’s iteration. Argue that the resulting sequence converges
to the minimum of f. Show that the sequence converges to the minimum of f

with quadratic speed of convergence. [ 6 marks ]
d) Consider the Newton’s iteration in part b) with initial point xo = 2.01. Compute
five steps of the Newton’s iteration. Argue that the resulting sequence diverges.
[ 4 marks ]
e) Consider the Newton’s iteration in part b). Show that
i) if the initial point xg = 2 then x; = 0, forall k > 1;
i1) if the initial point xg = 0 then x; = 0, for all k > 1;
iii) if the initial point xo > 2 then x; < 0, for all k£ > 1 and the sequence does

not converge;
iv) if the initial point xp € (0,2) then x; € (0,2), for all k > 1 and the se-
quence converges to the minimum determined in part a).

[ 6 marks ]
4, Let Qe R with Q=0 >0, x€ R", A€ R™" b€ R" and y € R™. Consider the
minimization problem
1
P: n&in Efox
Ax—b<0
and the so-called dual problem
p. | min %y’AQ“]A’y+ by
-y <0.
a) Write first order necessary conditions of optimality for the problem P. (Denote
the multiplier with p.) [ 2 marks ]
b) Write first order necessary conditions of optimality for the problem D. (Denote
the multiplier with &.) [ 2 marks ]
c) Let y, and o, be such that the optimality conditions in part b) hold. Show that
Xe = _Q.-lAly* Px = Y«
are such that the optimality conditions in part a) hold. [ 8 marks ]
d) Consider the minimization problem
min l)c’x
Pl . % 2
x1+1<0

with x € R" and x = [x;,x2,---,%,|'. Exploiting the results above solve this
problem. (Hint: write the dual D; of problem Py, solve problem D, and then
obtain a solution to problem P, exploiting the results in partc).) [ 8 marks ]
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Optimisation

5 Consider the optimization problem
min x7 + X,
X1, X2
x%+ (xz—l)z ==
a) Sketch in the (x1,x;)-plane the level surfaces of the function to be minimized
and the admissible set. Hence show that all points in the admissible set are
regular points for the constraints. [ 4 marks ]
b) Using only graphical considerations, determine the solution of the considered
problem. [ 2 marks ]
c) Show that the considered problem can be solved by eliminating the variable x;
and obtaining the optimization problem
min4 — (x; — 1)>+ x2
x2
—1 <xp <3.
[ 4 marks ]
d) Solve the optimization problem in part ¢) and hence obtain a solution for the
considered optimization problem. [ 4 marks ]
e) Suppose that one wants to solve the considered optimization problem using
recursive quadratic programming methods. Write the quadratic programming
problem associated with the considered optimization problem. [ 6 marks ]
6. Consider the optimization problem
max x§ x5 x5
Xiy X2, X3
Xi+x2+x—-1=0
x1>0
x>0
X3 2> 0:
LS
with o > 1.
a) State first order necessary conditions of optimality for this constrained opti-
mization problem. [ 4 marks ]
b) Using the conditions derived in part a), compute candidate optimal solutions.
Show that there is only one candidate solution such that x; # 0, x» # 0 and
x3 7 0. [ 8 marks ]
¢) Consider the candidate optimal solution with x; # 0, x; # 0 and x3 # 0 deter-

mined in part b). Show using second order sufficient conditions that such a
candidate optimal point is a local maximum. [ 8 marks ]
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Optimisation - Model answers 2006

(Note to external examiners: all questions involve mostly applications of standard methods
and concepts to unscen examples.)

Question 1

a) The engineer is applying the so-called coordinate directions method with an exact line
scarch (without derivatives), as described in Section 2.9 of the Lecture Notes, for the
minimization of the function —I = —I(x1,z2). This approach provides a sequence of
points converging to a stationary point of the function I provided that the initial point
is selected inside a compact level set of —I (1, z2).

b) i) Note that, by assumption, the function

d9 Vi(zs+ ad)d

da:

is zero for & = 0 and for every d. This means that
Vo (d d =10
for every d, and this implies that

Viiz) =0

ii) Without further information on f it is not possible to draw any conclusion on z,,
i.e. T, 18 a stationary point of f, but it may be a local minimum, a local maximum
or a saddle point.

iti) Consider a line that goes through zero, namely x5 = 21, and note that
f(@1,721) = (921 — 23) (1 — 223) = 72} — 3y} + 2o

and this shows that for all v the point 7 = 0 is a minimum of f(x1,vz1). For
completeness we have also to consider the line 1 = 0 (which corresponds formally
to v = oo). Note that

£(0,z2) = 73

hence the point 29 = 0 is a minimum of f(0, zs).
To show that (0,0) is not a local minimum of f note first that f(0,0) = 0 and
then let 1 =y and 29 = my®. Note that

fly,my?) = y*(m = 1)(m — 2).
Pick m € (1,2) and note that for such values of m
fly,my?) = y*(m—1)(m—2) <0

for all y # 0. This shows that close to the point (0,0), where the function is zero,
there are points in which the function takes negative values. Hence, (0,0) is not a
local minimum of f.



Question 2

a)

The stationary points of the function f arc computed by solving the equation

0=Vf= [ 2/3z1 — 4oz + 3/227 + w9 ] _

1 + 239

Solving the second equation for xy yields z3 = —1/2z1, and upon replacement in the

first equation we obtain 5
S — Aoz + g = 0.
6:31 ar] + 2.1‘1
yielding

1
T1e=10 Ti1p = 5\;‘ 12 + 3/ 1602 — 1 Fym— —%\/12a+3\/ 1602 — 1

1 1
Brd = 5\/12(2—3\/161%2—1 xlez—g\/12a—3\/1602—1.
For a = 5/12 we obtain the following stationary points
P, =(0,0) P, =(1,-1/2) Fe=(-1,1/2)
P;=(1/3,-1/6) P, =(-1/3,1/6).
Note now that, for o = 5/12,

2, | 2/3-5x2+15/2z% 1
vy | Yo A

and that
Vf(P) = [ <ol ] >0

V2 (By) = V2H(P) = [ e 2 } >0

sz(Pd) :VQf(Pe) o |V 11{54 é :| 0.

As a result, P,, P, and P, are local minima, and P; and P, arc saddle points.

Note that

5 4 1. afls &
—E$I+Zm?=xl Z;cl——

is radially unbounded. Hence
1 ; 1 5
f(.’.l’."l,.'l'.‘g) = (g:ﬂ% + 110 + .Té) + .L‘% (Zﬂﬁ'% e E) i

is also radially unbounded. The global minimum of f is also a local minimum of f.
Note that
f(P)=0  f(B)=f(P:)=-0833--.

Hence, B, and P. are both global minimizers, therefore the global minimum is not
unique.



Question 3

a) The minimum of f is obtained solving Vf = 1 — 1/ = 0, yiclding z = 1. Note that
x = 1 is indeed a minimum (a global one), because the function f is convex for all

b) The Newton’s iteration is zx+1 = 2k — goy V. (2k) = 2k — 27 (1

c)

@ 30:

Let zg = 1.99 then
x
T2
T3
Tq
Ty
6
T7
Ty
g
I10

The sequence is converging to z = 1, i.c. to the local minimum of f.

0.01990
0.03940399
0.07725530557208
(0.14854222890512
0.27501966404215
0.47440351247444
0.72374833230079
0.92368501609341
0.99417602323134
0.99996608129460.

To establish quadratic speed of convergence note that

Exr1  |mep =1 |2 —zp)z -1 _

& m-1F  @-DF
Let zgp = 2.01 then
z; = -—0.02010
xy = —0.04060401
x3 = —0.08285670562808
v = —0.17257864492369
s = —0.37494067853109.

We then infer that the sequence will decrease and limg_, oo 25 = —00.

The first two points are trivial noting that

Te+1 = (2 — Tk) Tk

and the r.h.s. is zero for @ = 0 or 2 = 2.
If zg > 2 then z; < 0. Moreover if 25 < 0 then

Tr+1 = (2 — zp)zk < 24,

which proves the third claim.

Finally, if 2 € (0,2) then it is easy to verify that

0< Tgy1 — (2 = xkjo.:k <2

1

7o) = (2 —xk)zp.

Morcover, if zx = 1 then @41 = 1, hence z = 1 is an equilibrium of the discrete-time
system Tr41 = (2 — zx)zk. Finally, if z € (1,2)

and if o, € (0,1)

0< Thy1 < 1,

Tp < Tyl < 1:;

which shows convergence of the sequence to z = 1.



Question 4

a) Let Lp = %z’@.’cﬁ— o'(Az—b) be the Lagrangian for problem P. The first order necessary
conditions of optimality for problem P are

Qz,+ Ap. =0
Az, —b <0
px 20

pL(Az, —b) =0.

b) Let Lp = 3y’ AQ ™t A'y+b'y+ o' (—y) be the Lagrangian for problem D. The first order
necessary conditions of optimality for problem D are

AQ 1Ay, +b—0,=0
_y* S 0

o, =0

o (—ys) = 0.

¢) Replacing z, = —Q~'A'y, and p, = y, in the equations in part a) yields

Q(-Q Ay )+ Ay, = 0
A-Q1Ay)-b < 0

Yx > 0
Vi(A(-Q7Ay,) —b) = 0.

The first of the above equations holds trivially.
For the sccond one note that

A(-Q Ay ) —b=—0,<0

by the third of the equations in b).

The third equation holds by the second of the equations in b).

The fourth equation holds exploiting the first and the fourth of the equations in b),
hence we conclude the claim.

d) Problem P; is of the form of problem P with @ = I, A = [1,0,---,0] and b = —1.
Hence, the dual Dy is )
S 2 o
D, { o

-y <0

with y € IR. The problem D, has the solution ¢, = 1 and ¢, = 0. Hence, the solution

to problem P is
T, =—[1,0,---,0] p.=1



Question 5

a) The level sets and the admissible sct arc depicted in Figure 1. Note that the constraint
is always active, and that the gradient of the constraint is never zero, hence all points
arc regular points.

3 ey
=2
2r A~
=1
1h
=0
2 ot
f=—1 ~\
-1 T
-—2_
-3l ol R
-3 -2 =1 0 1 2 3

Figure 1: Level sets and constraint for Question 5.

b) The solution of the problem is obtained when the level set of f is tangent to the
admissible set in its lower point. As a result, the optimal point is (z1, z2) = (0,—1).
¢) We can solve the constraint yielding
5 =4 — (a5 — 1)
Replacing in f we obtain the function to minimize
F=4—(z2- 1) +as
Note that xs is not free. In fact, from the constraint
(ga—1)2=4—22 <4
we obtain
—1 < xy < 3.
This shows that eliminating the variable z; yields the constrained scalar problem given
in part b).

d) Note that a solution to the minimization problem in part ¢) is obtained at a stationary
point of f or at the boundary of the admissible set. The function f has a stationary
point (a local maximum) for zz = 3/2. Note now that

f(-1)=-1 f@3/2)=21/4 f(3)=3.

Therefore the function f attains its minimum for o = —1. Replacing this into the
constraint yields
r1=0

and this coincides with the optimal solution obtained in part b).
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¢) Consider the optimization problem min, f(z) subject to g(z) = 0. Using recursive
quadratic programming methods to solve this problem one obtains the quadratic pro-
gramming problem

1 :
mainf(xk) + Vi(z)'d + EE'ViwL(;z:k, )
PQEH
dg(zk)
& 5 = 01
ox

where L = f+ Mg, 6 = x — x, and xp and A are the current estimates of the solution
and of the multiplier.
For the specific example it is enough to replace the function f, g in the above expression.



Question 6

a) Let
Fr= —iE?’.ﬁgiBg + /\(;::1 +x9 + T3 — 1) + ,Uq(—CC}) + ,UQ(—CL'Q) + {Lg(—xg).

The first order necessary conditions of optimality for the problem are

a—1,

—ax] r8T§ + A —pp =0
—az$zs Iz + A —pp =0
—oxfrfrdl + A —p3 =0
1+ T2+a3—1=0

-1 <0

—r3<0

—x3 <0

120

p2 >0

3> 0

zipy =0

Taps =0

x3pg = 0.

b) Consider the condition z;u; = 0. This implies g3 = 0 or 1 = 0.
If 21 = 0 then, because a > 1,

A=p1=ps = pz =k >0,

for some constant . If k > 0 then 25 = 0 and 23 = 0 which is not feasible. If Kk =0
then any z9 and z3 such that

To+x3—1=0 0 =0 3 >0

satisfies necessary conditions of optimality.

We obtain similar conclusions from the conditions zape = 0 and xzus = 0.

To obtain other candidate solution we have to consider the case 1 # 0, &2 # 0 and
x3 # 0. In this case, gy = o = p3 =0, and

azd lzgz§ —A=0

ardrd lzg —A=0
axfefzs~! — A =0.

The above equations imply
T1 =T = I3

which, together with the constraint a; + a9 + 23 — 1 = 0, yields the candidate optimal
solution (z1,z2,z3) = (1/3,1/3,1/3).
In summary, all candidate optimal solutions are

$1=$2:I3:1/3

I =0, 3‘!2+$3=1} .13220., :Ii';g>0
zo=0, z14+x3=1, 11 >0, 23>0
23=0, 21 4+22=1, 21 >0, 3 > 0.



¢) At the point (z1,z2,23) = (1/3,1/3,1/3) the only active constraint is the equality
constraint. Hence, the second order sufficient conditions of optimality are

§'V2Ls >0

for all s # 0 such that
1, 1, 1]s=0.

Note now that at the considered point

: 1y 302 CE(CE — 1) a® a?
VL =- (5) o? ala—1) o’
a? o? afa—1)

and the admissible s can be parameterized as
s5¢=[6,0,-8"  sp=[v,—7,0].

As a result

. q 3a—2 1 32 )
& V2 hg =12 (E) B2a>0 sf,Vstb =2 (5) Ya >0

which show that the considered point is a local minimizer.



